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Abstract

A series of investigations were induced to study the
formation, growth and methods to control the size of silica
particles via sol-gel process. The key parameters that affect
the particle size ie. concentration of TEOS
(tetraethylorthosilicate), NH;, H,O and feed rate of catalyst
were extensively studied. At lower NH; concentrations,
stable sols of ~ 30 nm particles were formed while high
concentrations leads to the formation of bigger, spherical
particles with sizes varying from 90 - 700 nm. The increase
in TEOS concentration resulted in bigger and multi-modal
distributed  silica particles. However, high H,0O
concentration and slow feed rate produced smaller
particles around 10 - 14 nm, as a result of controlled
reactions or particle growth. The kinetics of the overall
reactions of TEOS under various conditions was monitored
using conductivity studies.
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Introduction

The need for well-defined nanoscale materials (e.g. silica,
zinc oxide, metals etc.) which exhibits excellent properties
compared to its bulk counterpart has increased as high tech
industries provide an elevated demand for such material
[1,2]. Silica nanoparticles have been utilized as electronic
substrates, thin films, electrical or thermal insulators,
stabilizers and etc [1,3]. Besides material based industries it
is also used in biotechnology and pharmaceutical
applications. The performance of these products highly
dependent on the size and distribution of the silica particles
[4]. Varying levels of metal contaminants and wide size
distribution of commercial silica [4] promotes initiatives to
produce narrow distributed and highly pure silica particles
especially to conduct model studies [5].

The sol-gel process is widely applied to produce ceramic
materials due to its ability to form pure and homogenous
products at mild conditions. Stober process which involves
hydrolysis and condensation of tetraethylorthosilicate
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(TEOS) under alkaline conditions in ethanol is capable of
producing monodispersed, spherical silica nanoparticles [6].
Bogush and Zukoski [7], successfully prepared
monodispersed silica particles in the range of 40 nm to few
micrometers using almost similar method. The authors
believe that concentration of TEOS, concentration of
ammonia, concentration of water, solvent and reaction
temperature are the five key parameters which govern the
particle size and distribution. S. K. Park et. al. [4]
conveniently prepared ultra fine silica particles within the
range of 9.2 — 182 nm, using optimized conditions
determined from statistical simulations. Kim et al. [8]
reduced the particle size up to 17.5 nm through addition of
small amount of Nal during the synthesis. Recently,
Rahman et al. [9] reported that monodispersed silica in the
range of 17.0 — 24.0 nm can be synthesized by introducing
small amount of NH,Br into the sol-gel system.

The general reactions of silicon alkoxide which leads to the
formation of silica particles can be written as:

hydrolysis

Si(OR)s+ H,O - Si(OR);OH + ROH Q)]

water condensation

=Si-OH + HO-Si= > =Si-0-Si= + H,0 2)
alcohol condensation
=Si-OR + HO-Si= -  =Si-O-Si= + ROH 3)

Two different models can be used to describe the particle
formation and growth of silica particles. The monomer
addition model [10-11] presumes an initial burst of
nucleation, followed by addition of hydrolyzed monomers
to the particle surface. On other hand, the controlled
aggregation model [7,12] explains that the nucleation
occurs throughout the reaction and the resulting nuclei
(primary particles) will aggregate together to form larger
particles (secondary particles). Based on these models, the
particle size can be reduced by controlling the growth of the
primary units formed in the earliest stages of the reaction.
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