KTT 111/3 – Inorganic Chemistry I

Course Objective: To provide students with the basic knowledge of stoichiometry, periodic table, atomic structure, bonding in molecules and basic nuclear chemistry.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
1. Stoichiometry	 Basic laws of chemistry Significant figures The mole concept and stoichiometry Empirical formula Molecular formula Structural formula Percent composition Acid-base titration problems Balancing oxidation-reduction reactions Oxidation-reduction problems 	5	 Understand the basic laws of chemistry. Explain clearly the terms: element, compound and mixture. Write the formula for elements and compounds. Compute problems to the correct significant figures. Know the relationship between the mol, mass and Avogadro's number and use them in solving stoichiometric problems. Determine the empirical formulae of compounds. Determine the molecular formulae of compounds. Determine the percentage composition of specified entities in a given molecular formula or ionic formula. Balance oxidation-reduction reactions and apply them in solving stoichiometric problems. Solve any stoichiometric problem.

Торіс	Content	Number of lecture	Expected outcome – upon completion of this course, the student should be able to:
2. Periodic Table	 Mendeleev's contribution to the development of the periodic table Modern periodic table The long form of the periodic table The periodic arrangement of the elements in the periodic table The relationship between the groups and the number of valence electrons of the elements 	3	 Know the historical origin of the periodic table. Know the basis for the modern periodic table. Name inorganic compounds. Identify the elements in the groups: alkaline, alkaline earth metals, calcogens, halogens, noble gases, transition metals and the inner transition metals. Write the relationship between the elements in the group and in a particular period.
3. Electrons in Atoms	 Electromagnetic radiation Bohr's atomic theory de Broglie's concept of the dual nature of matter Schrödinger's wave equation and the appearance of the quantum numbers n, I and mI Energy levels in atoms The spin quantum number, s The periodic table and the relationship with the electronic configuration of elements The shapes of s, p, d and f orbitals The periodic properties of the elements 	6	 Write the relationship between wavelength, frequency and the speed of light. Know and identify the colours in the electromagnetic radiation. Differentiate between the continuous and line spectra. Use the Rydberg equation to calculate the wavelength or the frequency of an observed line in the hydrogen line spectrum. State the assumptions of Bohr's atomic theory and derive Bohr's equation for the energy of the electron in the hydrogen atom. State the reasons for the failure of Bohr's theory and relate it to Heisenberg's uncertainty principle. Explain the natural quantization of energy using the standing wave. Differentiate between orbit and orbital.

Торіс	Content	Number of	Expected outcome – upon completion of this course, the student should be able to:
		lecture	
		hours	
			 Write the values for n, l, m_l and s for a given electron in a particular orbital. Write the ground state electron configuration of any element in the periodic table. Use the periodic table to predict the electron configuration of elements. Draw and describe the shapes of s, p, d and f orbitals. Understand the concept of "effective nuclear charge". Explain the periodic variation of atomic properties – variation of atomic and ionic size and ionization energy. Explain the irregularities in the periodic variation of the ionization energy and electron affinity.

Торіс	Content	Number	Expected outcome – upon completion of this course, the
		of	student should be able to:
		lecture	
		hours	
4. Nuclear Chemistry	 The conservation of mass and energy in all of their forms Einstein's mass/energy relationship Nuclear binding energy Binding energy per nucleon and nuclear stability Radioactivity and emission of particles by unstable atomic nuclei Transmutation First order radioactive decay process Calculations of half-life Radiological dating Uses of radioactive nuclides Nuclear fusion and fission 	5	 Use Einstein's mass energy equation E = mc² to relate the mass energy relationship. Calculate the nuclear binding energy for a given atom. Explain the radioactive decay in terms of the instability in the nucleus. Write balanced nuclear reactions. Convert between energy units – the electron volt and joule. Explain the terms: radioactive disintegration series, positron emission, β-emission, α-emission, γ-emission, antimatter, neutron emission and electron capture. Explain how radioactive nuclei try to fall within the belt of stability. Know what happens during transmutation. Calculate half-life and the age of a given radioactive material (radiological dating) – i.e. C-14 dating. Know the uses of radioactive nuclei in medicine and in chemistry. Calculate the heat energy from the fusion and fission processes.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
5. Bonding	 Electron transfer and ionic compounds Lewis structure Covalent bond and partial charges Formal charge Resonance structure Molecular shapes and VSEPR model Valence Bond Theory Molecular orbital theory 	6	 Understand the basis of chemical bond formation. Understand the concept of electron sharing in covalent bond formation. Draw the electron dot representation for covalent compounds. Assign formal charges and predict the geometry of molecules using the electron pair repulsion principle. Explain the geometry of molecules using the concept of hybridization. Understand the concept of the linear combination of atomic orbitals (LCAO). Draw the relative molecular orbital energy diagram. Draw the Born Haber Cycle diagram and use it to calculate the electron affinity or the lattice energy in an ionic compound.

Торіс	Content	Number of lecture	Expected outcome – upon completion of this course, the student should be able to:
6. Structure, Properties and Application of Solids	 Crystalline solids and ordered internal structure Unit cells and crystal structure Stoichiometry and packing of atoms in a unit cell Physical properties and crystal types Band theory Macromolecules or polymers Inorganic polymers Modern ceramics Nanotechnology and molecular structure 	5	 Understand the various unit cells that make the crystalline solids. Determine the cationic or anionic coordination number from radius ratio calculation. Calculate the density of a solid and the atomic radius from unit cell dimensions, space group and atomic mass of element present in the solid. Explain the band theory and relate it to the electronic structure of solids. Distinguish between organic and inorganic polymers. Explain the formation of polymers using monomer units and various reaction processes in its synthesis. Understand the need for the development of modern ceramics to meet specific requirements of materials. Understand the nano-composite materials and their special properties.
	TOTAL	30	