KUT 102/2 – General Chemistry Practical II

Course Objective: To expose students to conduct the basic experiments that covers physical and organic chemistry.

Experiment Title	Content	Number of laboratory hours	Expected outcome - upon completion of these experiments, the student should be able to:
1. Behaviour of Gases: Molar Mass of A Vapour	Boyle's law and Charles's lawIdeal gas law	3	 Observe changes in temperature and pressure that affect the volume of gas. Determine molar mass.
2. Determination of R; The Gas Law Constant	 Determination of R, the gas law constant using ideal gas law and van der Waals equation Error analysis on the experimentally determined constant 	2.5	 Determine the ideal gas law constant, R. Understand factors causing the deviation from ideal behavior.
3. Colorimetric Determination of An Equilibrium Constant in Aqueous Solution	 Measurement of absorbance using spectrophotometer Determination of K_{eq} for the following equilibrium: Fe³⁺(aq) + SCN⁻(aq) → FeSCN²⁺ 	2.5	 Operate a spectrophotometer . Draw a calibration curve. Write an equilibrium constant expression and calculate the equilibrium constant.
4. Heat of Neutralization	 Heat capacity of calorimeter Heat of neutralization of HCI- NaOH (strong acid and strong base) Heat of neutralization of CH₃COOH-NaOH (weak acid and strong base) 	2.5	 Measure energy change accompanying a neutralization reaction. Construct a simple calorimeter to determine the heat capacity of a calorimeter. Use the same calorimeter to determine the heat of neutralization of HCI – NaOH and CH₃COOH –NaOH.

Experiment Title	Content	Number of laboratory hours	Expected outcome - upon completion of these experiments, the student should be able to:
5. Rates of Chemical Reactions I: A Clock Reaction	 Determination of rate law for the reaction: S₂O₈²⁻ + 2l⁻ → l₂ + 2SO₄²⁻ Graphical determination of the rate constant 	2.5	 Determine the order of reaction with respect to the reactant concentrations. Plot a graph and calculate the rate constant, k. Measure the effect of concentration on the rate of reaction.
6. Rates of Chemical Reactions II: Rate and Order of H_2O_2 Decomposition	 Determination of rate law for the reaction 2H₂O₂ (aq) → O₂ (g) +2H₂O (l) at different temperatures Recovering the catalyst used 	3	 Determine the rate and order of reaction for the decomposition of H₂O₂. Relate the activation energy and reaction rate constant (Arrhenius equation). Identify factors influencing the rate of reaction.
7. Identification of Substances by Physical Properties	 Determination of the solubility of naphthalene in different solvents Determination of the density for solid and liquid Determination of the melting point for benzophenone Determination of the boiling point for isopropyl alcohol. 	2.5	 Distinguish the degree of solubility of substance in different solvents. Know how to use and read balances, graduated cylinders and thermometer correctly. Write the relationship of density to mass and volume. Determine the density of solid using water displacement method. Determine the density of liquid using mass and volume. Operate the melting point apparatus and use it to determine the melting point of a given solid. Determine the boiling point of liquid. Identify a given substance by its solubility, density, melting and boiling points.

Content	Number of laboratory hours	Expected outcome - upon completion of these experiments, the student should be able to:
 Separation of binary mixture of benzoic acid and a neutral organic compound by utilizing the acid-base properties in extraction 	3	 Understand the basic principles of liquid-liquid extraction. Use the correct technique when handling a separatory funnel. Purify a crude sample using the recrystallization process.
 Titration of NaOH and an unknown acid Plotting a pH graph for the above titration Determination of pKa 	3	 Operate a pH meter. Prepare and standardize NaOH solution. Develop skills of using pipette and burette correctly. Use the concept of acid–base titration to determine the equivalence point and calculate the ionization constant of a weak acid. Calculate the concentration of an unknown acid.
 Using two techniques of separation – horizontal circular technique and ascending strip technique to separate a mixture of food dye 	2.5	 Understand the basic principles of paper chromatography. Perform separation/purification of compounds using horizontal circular and ascending strip techniques. Calculate the R_f values. Identify unknown substances using their R_f values.
 Reaction of salicylic acid and acetic anhydride with concentrated sulphuric acid Reaction of salicylic acid and methyl alcohol with concentrated sulphuric acid 	2.5	 Write the equations for esterification reactions. Conduct the synthesis of esthers. Conduct the purification of crude oil sample to get a pure product. Calculate the percentage yield of product obtained.
Hydrolyzing a commercial aspirin with an excess of NaOH and back titrating with acid	3	 Understand the concept of back-titration. Determine the purity of aspirin through an acid-base titration. Calculate the percentage purity of aspirin.
	 Separation of binary mixture of benzoic acid and a neutral organic compound by utilizing the acid-base properties in extraction Titration of NaOH and an unknown acid Plotting a pH graph for the above titration Determination of pKa Using two techniques of separation – horizontal circular technique and ascending strip technique to separate a mixture of food dye Reaction of salicylic acid and acetic anhydride with concentrated sulphuric acid and methyl alcohol with concentrated sulphuric acid Hydrolyzing a commercial aspirin with an excess of NaOH 	Iaboratory hours• Separation of binary mixture of benzoic acid and a neutral organic compound by utilizing the acid-base properties in extraction3• Titration of NaOH and an unknown acid3• Plotting a pH graph for the above titration3• Determination of pKa2.5• Using two techniques of separation - horizontal circular technique and ascending strip technique to separate a mixture of food dye2.5• Reaction of salicylic acid and acetic anhydride with concentrated sulphuric acid2.5• Hydrolyzing a commercial aspirin with an excess of NaOH and back titrating with acid3