KAT 241/3 Analytical Chemistry II

Course Objective: To gain some familiarity with the fundamental principles and applications of spectrochemical, separation and electrochemical methods.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of the course, the student should be able to:
1. Spectrochemical Methods	 An introduction to spectrochemical methods 	1	 Understand the electromagnetic spectrum, its properties and common spectroscopic methods based on electromagnetic radiation. Differentiate between atomic and molecular absorption. Understand Beer's law and its limitations. Understand emission spectra including emission by fluorescence and phosphorescence.
	Instruments for optical spectrometry	3	 Understand the components of the instrument including optical materials, spectroscopic sources, wavelength selectors, radiation detectors and transducers. Differentiate between single and double beam instruments.
	 Molecular absorption spectroscopy 	3	 Understand the absorbing species for ultraviolet (UV) and visible molecular absorption spectroscopy. Discuss the absorption characteristics of some common organic chromophores. Know typical instruments for absorption measurements including photometers, spectrophotometers, single-beam, double-beam and multichannel instruments. Explain the qualitative and quantitative applications of UV/Vis spectroscopy. Understand the infrared absorption spectroscopy including infrared (IR) absorption spectra, IR instruments, qualitative applications of IR spectrophotometers, and quantitative IR photometry and spectrophotometry.
	Molecular fluorescence spectroscopy	2	 Understand the theory of molecular fluorescence including relaxation processes and fluorescent species. Understand the effect of concentration on fluorescence intensity. Know fluorescence instruments, applications of fluorescence methods including methods for inorganic species and methods for organic and biochemical species.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of the course, the student should be able to:
	Atomic spectroscopy	3	 Explain the sources of atomic spectra including emission spectra and absorption spectra. Understand spectroscopy based upon flame atomization including flame atomizers, properties of flame and flame AAS. Know the instrument for AAS, interferences in AAS and quantitative analysis by AAS. Know flame emission spectroscopy. Understand the atomic spectroscopy with electro thermal atomizers, hydride generation techniques and cold vapour Hg. Discuss the atomic emission methods based on plasma sources.
2. Separation Methods	An introduction to solvent extraction and chromatographic methods	3	 Understand solvent extraction as a separation method. Understand the theoretical aspects of chromatographic methods. Understand the relationship between band broadening and column efficiency. Use chromatography for qualitative and quantitative analyses.
	 Gas chromatography (GC) 	5	 Know the components of the instrument for gas chromatograph including the sample-injection system, the column and the detectors. Distinguish several types of columns and detectors and select the right column and detector for specific samples. Appreciate the applications of gas chromatography for qualitative and quantitative analyses.
	High-performance liquid chromatography (HPLC)	4	 Know the components of the instrument for HPLC including the sample-injection system, the column and the detectors. Understand several types of HPLC columns and detectors. Compare between partition, adsorption, ion exchange, size-exclusion chromatography. Compare between HPLC and GC.
3. Electrochemical Methods	Potentiometry	6	 Understand the Nernst equation and the working principles of ion selective electrodes (ISE). Glass electrodes, pH. Examples of ISE.
	Voltammetry	6	 Understand the Ilkovic equation and polarographic methods. ASV, DPP
	TOTAL		