KIT 252/3 – Unit Operation

Course Objective : To introduce the basic concepts of energy and material balances, fluid dynamics and heat transfer and their industrial applications

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
1. Units and Conversion	 SI unit and British unit systems (feet, lb etc) Dimension unit Conversion coefficient 	2	 Convert from SI unit to British unit system and vice versa. Understand the dimension concept. Understand of conversion coefficient concept. Use conversion coefficient.
2. Material Balance	 Basic concepts of material balance such as system, system border, batch system, continuous system etc. Material balance on steady state and recycle state Material balance concept based on chemical processes 	5	 Determine and draw system for any process in order to come out with material balance equations. Write material balance equations. Identify among the batch process, continuous process and recycle process. Understand the material balance in a chemical reaction process. Write a stoichiometric equation for the chemical reaction equilibrium. Use the stoichiometric equation to solve the material balance problems.
3. Energy Balance	 Basic concept of energy balance such as inner energy, kinetic energy, potential energy, etc. Application of the steam table Calculation of heat reaction Energy balance concept based on chemical processes (including stoichiometric chemical reaction equation) 	5	 Relate heat concept with the energy and work concepts. Distinguish between positive work and negative work. Use the steam table. Solve problems on heat of reaction from a given chemical equation. Apply energy balance concepts for open and closed systems. Use the stoichiometric equation in solving problems of energy balance.
4. Fluid Pressure	 Pressure in liquid Measuring pressure in liquid by using piezometer and manometer 	2	 Calculate the pressure on the top and bottom levels of a liquid reservoir and pressure difference. Understand the concept and application of manometer in calculating the pressure difference in a pipe or reservoir.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
5. Fluid Dynamics	 Conservation of mass and energy flow through a control volume of a liquid, continuity equation Bernoulli equation and application for liquid flow 	3	 Calculate mass flow rate, speed, discharge rates and other flow parameters. Know how to represent energy in terms of energy height. Deduce Bernoulli's equation and apply it in problem solving involving liquid flow.
6. Liquid Flow Measurement	 Instrument for liquid flow measurement Pitot tube, Prandlt tube, Venturi meter and orifice 	3	 Understand the concept used in measuring liquid flow. Calculate the flow properties of a liquid.
7. Liquid Flow Through Pipes	 Reynolds number Energy losses (head losses) in pipe systems: along the pipe, pipe connection, diameter change, outlet and inlet, pipe in parallel and series 	4	 Determine the type of flow by Reynolds number. Calculate energy loss in terms of head loss for each system mentioned and in the pipe line systems.
8. Introduction to Heat Transfer	 Transfer processes and fundamental equations of transfer processes Temperature (T)-distance (dx) relationship with heat transfer Modes and mechanisms of heat transfer Fluid boundary-layer analogy Steady and unsteady state transfer Thermal conductivity 	3	 Explain and identify various transfer processes. Explain differences between various transfer processes via fundamental transfer equations. Identify and describe various modes and mechanisms of heat transfer. Explains heat transfer process using T-dx relationship and fluid boundary layer analogy. Differentiate between steady and unsteady state heat transfers. Understand basic concept of thermal conductivity and their relationships with heat transfer processes.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
9. Steady States Heat Transfer	 Parallel and serial heat transfer in homogenous and non-homogenous cubes, blocks and layered pipes Derive equations for parallel and serial arrangement heat transfer in homogenous and non-homogenous systems Overall heat transfer coefficient and its significance 	6	 Derive heat transfer and heat flux equations based on a specific shape of the items for conduction and convection modes. Use equations to calculate heat transfer and heat flux of the different shapes of a particular object. Illustrate the basic concept of heat transfer (i.e convection and conduction single modes) at multiple layers with different materials and/or combination of modes of heat transfer systems. Calculate the amount of heat transfer for a given specific problem.
10. Heat Exchangers	 Concept of heat exchangers Heat exchangers in industry Examples of 'simplified' heat exchanger Derivation of heat transfer equations for concentric tubes and tubes and shell heat exchangers 	3	 Relate the concept of heat transfer in a real system particularly the concentric tube heat exchanger. Gain a brief understanding of the application of heat transfer in industries or related machinery. Derive heat transfer equations of a cooling system normally used in industries (concentric tube heat exchanger).
	TOTAL	36	