KIT 253/3 – Chemical Engineering Thermodynamic

Course Objective : To introduce some of the basic concepts of chemical engineering thermodynamics and its related industrial applications

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of the course, the student should be able to:
1. Work and Heat	 Concept of engineering thermodynamics Work done due to ideal gas expansion, polytropic process Heat 	3	 Differentiate between thermodynamic properties and systems. Calculate work done using ideal gas equation and polytropic process. Identify heat or work transfer to and from the system.
2. Compressible Pure Substances	 Introduction to compressible pure substance Vapour-liquid-solid phase diagram of water system. Steam Table and application Other pure substances (eg. ammonia and refrigerant R-12) 	5	 Identify compressible pure substances. Use Thermodynamic Tables for solving related problems.
3. First Law of Thermodynamics	 Conservation of energy and the First Law of Thermodynamics: Internal energy, heat and work Conservation of mass and energy equations for control volume Steady-state and steady flow processes Application of conservation of mass and energy equations to the system such as heat exchanger, turbine, nozzle etc. 	6	 Derive the energy and mass equations for a control volume based on the First Law Thermodynamics. Use the above equations in solving the related thermodynamic systems.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of the course, the student should be able to:
4. Second Law of Thermodynamics and Entropy	 Second Law of Thermodynamics Entropy change, reversibility and increment for gases Isentropic or reversible adiabatic process Control volume equation Efficiencies 	7	 Calculate the entropy change of a system. Calculate thermodynamic properties and identify the process reversibility. Calculate the heat and work and other properties by using the second law control volume equation. Derive and use efficiencies equation of the operation units.
5. Thermodynamic Cycles	 Carnot cycles Air cycles Steam cycles Heat pump and refrigeration cycles 	8	Apply First and Second laws of thermodynamics for cycles analysis.
6. Thermodynamic Relationships and Equations	 Maxwell and Clapeyron equations Thermodynamic relationships Specific heat capacity, compressibility and expansibility Fugacity 	4	• Understand the relationship between thermodynamic properties and their applications in the derivation of heat capacity, compressibility, expansibility and fugacity.
7. Combustion of Fuel	Combustion process	3	 Understand the combustion process equation. Calculate theoretical air, air-fuel or fuel-air ratios based on fuel or combustion product composition. Understand a simple mass balance.
TOTAL		36	