KIT 254/2 – Polymer

Course Objectives 1) : 2)

To study the polymerization mechanisms and kinetics. To introduce the physical chemical principles and properties of polymers.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
1. Introduction to Polymers	 The importance of polymers to man Basic concepts Classification of polymers The architecture of polymer molecules Polymer morphology Copolymers Plastics Elastomers The effects of temperature on polymers Geometrical arrangement of atoms in polymer molecules Chemical bonds in polymer molecules Crystallinity of polymers 	2	 Differentiate the advantages and disadvantages of polymer materials compared to other substances (for example: metals and wood) on the basis of their properties. Understand the basic terms: polymer, monomer, degree of polymerisation (DP), repeating units, chain molecules. Recognise the basic structures of a polymer: linear, branched, cross-linked and network. Differentiate the molecular arrangement in an amorphous, crystalline and semicrystalline polymers. Understand the difference of morphology on the physical properties of polymers. Understand the difference between homopolymer and copolymer. Recognise the structure of random, alternate, block and graft copolymers. Understand the differences in properties between thermoplastic, thermoset and elastomer. Understand the term glass transition temperature and its relationship with the chemical structure of a polymer. Understand why a polymer behaves as plastic or elastic. Identify several types of intermoleculecular forces and their influence on the physical properties of polymers.
2. Polymerisation Mechanisms	 Step reaction polymerisation Chain reaction polymerisation Comparison between step and chain reaction polymerisation 	1	 Understand the general characteristics and differences between step reaction and chain reaction polymerisation.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
3. Step Reaction Polymerisation	 Examples of condensation polymers Kinetics of step polymerisation: Self-catalysed External-catalysed Quantitative aspects of step polymerisation Molecular weight control 	3	 Recognise the structure of condensation polymers and their monomers. Derive the kinetic equations for self-catalysed and external-catalysed step polymerisation. Understand the effect of both types of catalysis to DP and molecular weight. Understand the use of the Carothers equation. Understand the methods to control molecular weight and use the appropriate equations in calculations.
4. Radical Chain Polymerisation	 Examples of chain polymers Main characteristics Free radical initiators Mechanism of polymerisation Kinetics of chain polymerisation: system with initiator system without initiator Kinetic chain length 	3	 Write the three-step mechanism for a vinyl monomer. Understand the main characteristics of a radical chain polymerisation. Recognise several examples of free radical initiators and know their functions. Understand the schematic mechanism of radical chain polymerisation. Derive the kinetic equations for each step of the mechanism. Understand the steady state concept. Derive equations of the rate of polymerisation for a system with initiator and without initiators. Understand the term 'kinetic chain length'. Derive the equation for kinetic chain length.
5. Chain Transfer Reaction	 Types of chain transfer reactions The effects of chain transfer Kinetics of a chain transfer reaction Control of molecular weight by chain transfer 	3	 Understand the concept of a chain transfer and the effects on the molecular weight of polymers. Derive kinetic equations that relate DP with the rate of polymerisation and the rate of a polymer formation. Understand a method of molecular weight control by a kinetic chain transfer.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
6. Ionic Polymerisation	 Reaction mechanisms in ionic (cationic and anionic) polymerisation of vinyl monomer Kinetics – polymerisation kinetics of anion and cation processes, influence of solvent, counter-ion and temperature Crosslinking formation in polymers and their applications in industries 	3	 Choose monomer that can be polymerised through anionic and/or cationic polymerisation techniques. Write polymerisation reaction mechanisms involved in anionic and cationic systems. Illustrate rate and degree of polymerisation from kinetic schemes. Relate factors that influence polymerisation with kinetic equations. Understand and write crosslinking reaction mechanisms of a given polymer and can select special routes to crosslink different polymers. Relate crosslinking behaviour with polymer based products.
7. Polymers Characterisation	 Polymer molar mass – molar mass distributions; average molar masses Determination techniques on molar mass: gel permeation (size exclusion) chromatography and membrane and vapour pressure osmometry Determination of polymer viscosity: dilute solution viscometry ; intrinsic viscosity and the Mark-Houwink relationship for M_v 	4	 Calculate molar mass using an equation and identify their distribution in the polymer matrix. Use the instruments to measure the molar mass of polymers. Indicate some equipments to characterise polymers.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
8. Physical and Mechanical Behaviour of Polymers	 Physical : basic concepts of glass transition temperature, melting behaviour in polymers and factors effecting melting and glass transition temperatures Mechanical : basic concepts of mechanical behaviour in polymers and composites. Experimental studies on polymer films and fibres. Yields criteria e.g. determination of stress, strain, modulus,UTS and elongation at break Equipments and techniques to determine glass transition temperature, melting temperature, mechanical properties. 	5	 Understand a basic knowledge of the physical properties of solid polymeric materials and how properties and chemical and materials structures are related. Calculate modulus, UTS, elongation at break from tensile tests and 3 point bending data. Choose equipments for the estimation of physical and mechanical properties of polymers.
TOTAL		24	

UUTTHH