KTE 211/2 – Group Theory and Spectroscopy

Course Objectives: 1) To introduce the basic concepts of symmetrical elements and point groups.2) To introduce the principles of molecular spectroscopy and techniques.

Topic	Content	Number of	Expected outcome - upon completion of this course, the student
		lecture hours	should be able to:
1. Group Theory	 Symmetrical elements and operations 	3	 Understand the types of symmetrical elements and symmetrical operations in particular with respect to applications of chemical structures. Differentiate between symmetrical elements and symmetrical operations.
	 Determination of point groups Basic concept of Group Theory for chemical species 	3	 Understand the use of flow-charts for the determination of point groups for wide selection of chemical structures. Understand the rules and basic concept of class in the context of Group Theory. Understand the use of matrices in representing the symmetrical operations. Derive the character for each matrix which represents the symmetrical operation on known base. Understand the properties of Character Tables and the implications of the members in the Table.

Торіс	Content	Number of lecture hours	Expected outcome - upon completion of this course, the student should be able to:
	The concepts of irreducible representations and reducible representations	3	 Understand the on concept applications of various basis functions. Identify and derive reducible and irreducible representations. Understand the reduction process of reducible representation for atomic displacements in chemical species.
	Application of Group Theory in vibrational spectroscopy and molecular orbitals	3	 Obtain the appropriate orbital for the respective π-bonding in certain molecule. Derive the symmetry representations of vibrations and determine the Infrared and Raman activity. Propose the symmetry properties of the mode of molecular vibration. Determine the type of vibration which can be observed in the Infrared and Raman spectra. Differentiate among the isomers by using the Group Theory.
2. Spectroscopy	 Basic principles of molecular spectroscopy 	1	 Understand the interaction between the electromagnetic wave and mass. Know the fundamental aspect of electronic transition in atoms and molecules. Know the basic aspects of rotational and vibrational spectroscopy.
	Rotational infrared and microwave spectroscopy	2	 Understand the linear, symmetric rotor, spherical rotor and asymmetric rotor molecules. Explain the spectrum and rotational energy associated with certain molecules. Know how to determine the moment of inertia for diatomic molecules. Understand the <i>isotopic effect</i> upon moment of inertia.

Торіс	Content	Number of lecture hours	Expected outcome - upon completion of this course, the student should be able to:
	Vibrational spectroscopy	2	 Understand the molecular vibration of diatomic molecules. Know the principles involved in the infrared/Raman spectra in relation to harmonic and anharmonic oscillation. Understand the transitions between the stacks of rotational energy levels associated with two different vibrational levels which result in the P, Q and R branches.
	Electronic spectroscopy for atom and molecule	3	 Understand the atomic structure and quantum number. Know about the energy associated with the respective atomic and molecular orbitals. Understand the electronic spectra and the Frank-Condon principle. Know how to adopt the molecular orbital concept to assume the electronic configuration. Understand and derive the electronic states arising from configuration.
	Spectroscopy of UV/FT- IR/FT-NMR	4	Understand the basic concept associated with the respective techniques of UV/FT-IR/FT-NMR which have well been adopted in the characterisation of chemical compounds.
TOTAL		24	