KTT 212/3 - Inorganic Chemistry II

Course Objectives :

1) To introduce the basic aspects of coordination chemistry and the development of d-block elements or transition metals.

2) To gain some familiarity of the application of transition metal complexes in organometallic and bioinorganic fields.

Торіс	Content	Number of lecture hours	Expected outcome - upon completion of this course, the student should be able to:
1. Introduction on Transition Metal Complexes or Coordination Compounds	 Background and the development in block d elements (transition metals) Basic aspects related to the coordination compounds Definition of coordination compounds Coordination number and oxidation state for central metal atom Characteristics and types of ligands 	5	 Understand the differences between the block d and f elements with those from other groups. Understand the basic terminologies including the coordination number, oxidation state of central metal atom, coordination sphere and Werner complexes. Understand the fundamental concept related to the bond formation between metal and ligands such as the adduct formation based on Lewis acid-base interaction. Understand the characteristics of coordination compounds, transition metal complexes, the development of these compounds from the experimental viewpoints and based on the postulates proposed by Werner and Jorgensen. Understand the relationship between the electronic configuration of metals and the characteristics of its complexes.
2. Structure, Isomerism and Nomenclature	 Establishment of different geometries and structures in transition metal complexes Presence of isomers in transition metal complexes The naming of transition metal complexes based on IUPAC system. Concept of Soft and Hard Acid and Base (HSAB). 	5	 Understand the concept towards the obtainment of various geometries depending on different coordination numbers. Predict the geometry of transition metal complexes. Uderstand the nomenclature of coordination compounds. Write the name, chemical formula and structure for transition metal complexes. Understand different types of ligands which give particular isomers consisting of 4 and 6 coordination numbers. Adopt the concept of Lewis acid-base in the formation of transition metal complexes.

Торіс	Content	Number of lecture hours	Expected outcome - upon completion of this course, the student should be able to:
3. Formation Constant for Transition Metal Complexes.	 Complex stability which can be deduced from the formation constant Various factors which affect the complex stability Chelate effect Labile and inert concepts in transition metal complexes Effective atomic number and 18-electron rules. 	5	 Understand the basic concept related to the formation of coordination compounds which includes formation and stability constants for adducts and acid-base complexes. For instance, the stepwise formation constant and the overall formation constant. Understand the characteristics of labile and inert based on thermodynamics and kinetics. Discuss the main factors contributing to the complex formation, electronic effect, steric effect, chelate effect and the explanation based on the thermodynamic concept.
4. Preparation of Coordination Compounds and Spectroscopy	 Introduction on the preparative methods for transition metal complexes Application of spectroscopy in characterization. 	4	 Recognize the methods used in the preparation of transition metal complexes. Understand the characterization techniques on transition metal complexes such as FTIR, UV-visible, FTNMR.
5. Bonding Theory in the Formation of Transition Metal Complexes	 Valence bond theory (VBT) Crystal field theory (CFT) Molecular orbital theory (MOT) Metal-metal bond theory Tanabe-Sugano diagram Metal-metal bonding in the multinucleic compounds and cluster 	9	 Understand the presence of different colors associated with various coordination compounds. Understand the basic approach towards the development of all bonding theories including valence bond theory, crystal field theory and molecular orbital theory. Discuss and understand the advantages and disadvantages of each theory when one needs to explain the bonding of transition metal complexes which possess 4 and 6 coordination numbers. Understand the concepts related to back-bonding, Jahn-Teller effect, spectrochemical series, crystal field stabilization energy, splitting of degenerated d orbitals, pi bonding, strong and weak fields, high and low spins, paramagnetic, diamagnetic and metalmetal bonding. Understand the concepts associated with labile and inert properties based on crystal field theory. Apply the Tanabe-Sugano diagram in explaining the electronic spectroscopy (UV and visible) in transition metal complexes. Understand the concept and approach related to the multiple bonding between the metals and the metal-metal bonding in the cluster compounds.

Торіс	Content	Number of lecture hours	Expected outcome - upon completion of this course, the student should be able to:
6. Introduction on the Reaction Mechanism Leading to Transition Metal Complexes	Introduction on the reaction mechanism which leads to the formation of coordination compounds	4	 Understand at least 3 types of reaction mechanisms which involve transition metal complexes; for example (i) associative, (ii) dissociative and (iii) redox. Use the 'trans-effect' in facilitating the preparation of 4-coordination compounds.
7. Application of Transition Metal Complexes in Organometallic and Bioinorganics	 Discussion given is based on the concept associated with the formation of transition metal complexes which give the organometallic compounds and of those exist in life cycle Introduction towards the nanomaterials obtainable from transition metals 	4	 Understand the type of transition metals which are important for the biological systems and biochemistry. Understand the importance of transition metals towards the mankind. Understand the application of transition metals in medicine. Understand the concept related to the formation of vitamins and haemoglobin, and also the role of transition metals in the respective mechanism. Understand the role of transition metals (especially for organometallic compounds) as catalysts. Understand the current development on nanomaterials obtained from transition metals and their roles in the preparation of nano materials.
TOTAL		36	