KUT 203/2 - Chemistry Practical III – Inorganic

Course Objective : To become acquainted with the common techniques on the synthesis of inorganic compounds and methods of characterization

Experiment title	Content	Number of laboratory hours	Expected outcome – upon completion of these experiments, the student should be able to:
1. Study of A Metal Complex, Potassium Trioxalatoaluminium (III) Trihydrate, K_3 [Al(ox) ₃].3H ₂ O	 Preparation of K₃[Al(ox)₃].3H₂O Analysis of K₃[Al(ox)₃].3H₂O 	3	 Understand the definition and technique on the synthesis of the metal complex i.e. K₃[Al(ox)₃].3H₂O. Determine the composition of metal complexes in both acid and basic mediums.
2. Preparation and Conductivity of $[Co(NH_3)_4CO_3]NO_3$ and $[Co(NH_3)_5CI]CI_2$	 Preparation of [Co(NH₃)₄CO₃]NO₃ and [Co(NH₃)₅CI]Cl₂ Determination of molar conductivity of the complexes 	4	 Understand the common technique on synthesis and the chemical properties of two coordination compounds i.e. [Co(NH₃)₄CO₃]NO₃ and [Co(NH₃)₅CI]Cl₂. Substantiate the difference between these ionic complexes by using the conductivity measurement which indicates the presence of free ions.
3. Synthesis of Bis(triphenylphosphine) Copper(II) Borohydride, (Ph ₃ P)CuBH ₄	 Synthesis of (Ph₃P)CuBH₄ Spectroscopic and physical analysis of the complex 	3	 Understand the definition of electron deficient compounds within the context of coordination complexes. Characterize the compound from qualitative viewpoints by using the spectroscopic technique such as IR and ¹H-NMR.

Experiment title	Content	Number of laboratory hours	Expected outcome – upon completion of these experiments, the student should be able to:
4. Complex Ion Composition Using Job's Method	 Preparation of Ni(II) complex solution with different mole fraction of ligand (ethylenediamine) Determination of mole ratio of Ni:ligand by UV-Vis spectroscopic technique 	2	 Synthesize and isolate the complex containing free ions in the solution. Apply continuous variation method or Job's method in investigating the composition of complex ions.
5. The Chemistry of Vanadium	 Preparation of standard solution of vanadium(V) complex Reduction of vanadium(V) by zinc (without air), zinc and sulfur dioxide Identification of ionic vanadium species through the presence of various colors in solution 	3	 Understand the chemical properties of the first row d-block metal i.e. vanadium. Understand the correlation between the colors of transition metal or metal ion with its oxidation state i.e. VO₂⁺ (yellow), VO²⁺ (blue) etc. Determine the composition of a metal complex of which the metal exists in various oxidation states by using the titration technique.
6. Electronic Spectra of Coordination Compounds	 Preparation of coordination compounds: potassium tris(oxalate)chromate(III) trihydrate and potassium hexathiocyanato chromate(III) tetrahydrate Study on the electronic properties of Cr(III) complexes by UV-Vis spectroscopic technique Investigation of the ligand field splitting energy in each complex via the determination of Δ_{oct} 	4	 Synthesize several coordination compounds which possess different ligands either within or outside the coordination sphere i.e.K₃[Cr(C₂O₄)₃].3H₂O and K₃[Cr(SCN)₆].4H₂O. Understand the field strength among different ligands such as C₂O₄, H₂O, SCN etc. Understand the concept on electronic transition among these complexes which can be inferred from the UV-Vis spectra. Calculate the ligand field splitting energy (Δ_{oct}) which serve to substantiate the field strength among these ligands.

Experiment title	Content	Number of laboratory hours	Expected outcome – upon completion of these experiments, the student should be able to:
7. Preparation and Reaction of Tris(ethylenediamine)cobalt (III) into Its Optical Antipode	 Preparation of barium d-tartrate Molecular rotation determination for the two diastereomers Determination of percent composition of iodide in complex 	11	 Understand the concept on optical isomerism in coordination compounds and the synthesis of these isomers or isolation of D- and L-isomers. Determine the composition of isomers thus isolated through titration. Substantiate the optical behaviour of these isomers.
8. Characterisation of the Linkage Isomers: Nitropentaamminecobalt(III) Chloride, [Co(NH ₃) ₅ NO ₂]Cl ₂ , and Nitritopentaamminecobalt(III) Chloride, [Co(NH ₃) ₅ ONO]Cl ₂	 Preparation of [Co(NH₃)₅Cl]Cl₂ Preparation of the X isomer Preparation of the Y isomer Determination of the infrared spectrum 	5	 Understand the concept on lingkage isomerism in coordination compounds and the technique used in the synthesis and isolation of these complex ions i.e. [(NH₃)₅CoNO₂]Cl₂ and [(NH₃)₅CoONO]Cl₂. Substantiate the functional group present in the isomers using the spectroscopic technique such as IR.
9. The Electronic Spectra of Some Copper(II) complexes	 Preparation of [Cu(NH₃)_{4]}SO₄.H₂O Preparation of K₂[Cu(ox)₂].2H₂O Preparation of [N(CH₃)₄]₂[CuCl₄] Study on the electronic properties of Cu(II) complexes by UV-Vis spectroscopic technique Study on the spectrochemical series based on ligand field splitting energy Δ_{oct} 	6	 Understand the absorption of UV-Vis radiation by the transition metal complexes which results in the electronic transition among d orbitals of the central metal. Understand the connectivity between the types of ligands and its ∆ values which corresponds to the d-orbital splitting for these complexes. Understand the concept on how to derive the spectrochemical series for some common ligands.
TOTAL		41	