KUT 205/2 – Chemistry Practical V - Analytical

Course Objective :

To become acquainted with the analytical techniques – spectroscopic methods, electroanalytical method and chromatographic techniques.

Experiment title	Content	Number of laboratory hours	Expected outcomes – upon completion of the experiments, the student should be able to:
1. Absorption	Determination of iron with 1,10-	3	Operate an UV/Visible spectrophotometer.
Spectrophotometry	phenanthroline		Perform an analysis using a calibration curve technique.
2. Ion Exchange Resin	• Determination of the sodium,	3	Understand ion exchange.
and Complexometric Titration	magnesium and acidic content of a solution mixture using an ion		 Use ion exchange resin to determine contents of a solution mixture - H⁺, Na⁺ dan Mg²⁺.
	exchange resin		Perform an acid-base titration.
			Perform a complexometric titration using EDTA.
3. Electrogravimetry	Determination of copper in an	3	Operate an experimental setup for electrogravimetry
	unknown solution		 Perform an electrogravimetric analysis for the determination of metals.
4. Electroanalytical Method – Ion Selective Electrode	• Determination of fluoride in tap water and a tooth paste sample using a fluoride ion selective electrode	3	Perform determination of fluoride using an ion selective electrode.
5. Infrared	Quantitative analyses of m-xylene	3	Operate an infrared spectrophotometer.
Spectrophotometry	and p-xylene in a mixture of xylenes using infrared spectrophotometry		 Perform a quantitative determination of m-xylene and p-xylene using an internal standard method.
6. Gas	Separation and quantitative	3	Operate a gas chromatograph.
Chromatography	determination of a mixture.	l	Calculate number of theoretical plates from a gas chromatogram.
			 Carry out a quantitative analysis of mixtures of common industrial solvents such cyclohexane (C₆H₁₂), methylene chloride (CH₂Cl₂) in toluene (C₂H₆).
			Determine the efficiency of the column.

Experiment title	Content	Number of laboratory hours	Expected outcomes – upon completion of the experiments, the student should be able to:
7. High performance liquid chromatography	 HPLC separation of a mixture of hydrocarbons 	3	Carry out a qualitative and quantitative analysis of mixtures of hydrocarbons.
8. Atomic Absorption Spectroscopy	Determination of calcium by atomic absorption spectroscopy.	3	 Optimize instrument parameters. Study interference effects. Determine calcium concentration in mineral water by atomic absorption spectroscopy using the calibration technique and method of standard additions.
9. Visible spectrophotometry	Determination of the Mole Ratio of Iron : 1,10- phenanthroline in the complex formed.	3	Determine the mole ratio using the method of continuous variation and mole ratio method.
10. Flame Emission Spectroscopy.	Determination of sodium by flame emission spectroscopy.	3	 Optimize instrument parameters. Study interference effects. Determine sodium concentration in mineral water by flame emission spectroscopy using calibration technique and internal standard method.
TOTAL		30	