KAT 340/2 – Analytical Chemistry Practical II

Course Objective : To acquire practical skill in electronic interfacing in relation to analytical instrumentation and data acquisitions and processing.

Торіс	Content	Number of laboratory hours	Expected outcome – upon completion of these experiments, the student should be able to:
1. Analog Electronics	 Operation amplifiers in chemical instrumentation Circuits employing operational amplifiers Voltage follower Voltage amplification Applications to mathematical operations Multiplication/division Addition/subtraction Integration Differentiation 	12	 Use a breadboard. Identify electronic components, its symbols and how to use them. Connect batteries and components to a breadboard. use the operational amplifier such as LM 741 and its use in signal amplification. Understand their role in precise measurement of voltage, current and resistance – signals obtained from transducers in chemical measurements. Understand that operational amplifiers are employed to perform mathematical operations such as: Summing Multiplying Integrating Understand that these operations are an important part of modern instrumentation. Construct circuits for voltage divider, voltage follower, signal amplifier, signal adder, signal comparator, signal integrator and signal differentiator.

Торіс	Content	Number of laboratory hours	Expected outcome – upon completion of these experiments, the student should be able to:
2. Digital Electronics	 Logic gates NOT, AND, NAND, OR, NOR, EX-OR and EX- NOR 	3	 Understand that simple logic functions in electronic circuits may be performed by logic gates. Understand that logic gates process signals which represent true or false. Wire up circuits for various logic gates. Test out truth tables for various logic gates.
3. Problem-Based Learning	 Group projects on data acquisition, electrochemistry, separation techniques and spectroscopy. 	21	 Work as part of a team on a group based project (definition of problem, designing and running of experiments to solve the problem, data analysis). Write a report and present project work in a seminar. Be more creative and develop critical thinking.