KAT 341/3 - Pollution and Environmental Chemistry

Course Objective : To know the concepts of pollutions in air and water and various classes of pollutants.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of these experiments, the student should be able to:
1. The Key Concepts of Water Pollution	 Definition of water pollution and factors of water pollution Concept of sustainable development Classification and evaluation of factors of pollutants 	1.5	 Understand the meaning and concept of pollution. Understand the concept of sustainable development. Understand all possible sources of water pollution as well as the characteristics of water pollutants.
2. Environmental Quality Act and Water Quality Standards	 Water Quality Criteria Environmental Quality Act 1974 Water Quality Standards Water Quality Management 	2	 Understand how water quality standards are developed and generated. Know the Environmental Quality Act of Malaysia. Compare the water quality criteria of Malaysia and other major nations.
3. Nutrients and Eutrophication	 Nutrients classification/definition Phosphorus and Nitrogen cycles Aquatic chemistry of phosphorous Nutrients transport in aquatic environment Eutrophication: its chemistry and impact on aquatic environment Management of eutrophication problems Analyses of P and N 	4	 Understand the meaning of nutrients and their effects on plants and animals. Understand the nutrient cycles in water environment especially for P and N. Write chemical formulas and properties of various types of phosphates. Understand the transport process of phosphates into water environment. Understand the aquatic chemistry of phosphates. Know how eutrophication of aquatic environment occurs and how to control and manage this phenomenon.

Experiment Title	Content	Number of lecture hours	Expected outcome – upon completion of these experiments, the student should be able to:
4. Heavy Metals	 Definition of heavy metals and metalloids/sources Heavy metal toxicity pE-pH diagram of heavy metals Effect of ligand complexation of heavy metals Biotic transformation Management of heavy metal pollution Analysis of heavy metals 	6.5	 Comprehend the meaning of heavy metals and metalloids and their sources. Understand why heavy metals are toxic and considered as serious water pollutants. Draw pE-pH diagrams of metal ions. Understand and interpret a given pE-pH diagram of metal ions system. Understand the aquatic chemistry of heavy metals that includes the effect of pH, complexation and biological transformation.
5. Oxygen Demanding Substances	 Types of oxygen demanding substances and micro-organisms and utilization of oxygen Carbonaceous oxygen demand and its effect on aquatic environment Dissolved oxygen (DO), its balance in aquatic environment.and oxygen sag curve Biochemical oxygen demand. (BOD) analysis and its application Chemical oxygen demand (COD) analysis Management of oxygen demanding substances 	6.5	 Write the categories of pollutants that cause depletion of oxygen. Understand how micro-organisms play a role in removing organic pollutants and consuming oxygen in the process. Comprehend how organic pollutants are degraded by aerobic bacteria. Comprehend the limit of solubility of oxygen by Henry's law. Derive the Streeter-Phelps equation and apply it in modeling DO in water. Understand the principles behind BOD and COD analyses. Calculate the rate constant k from the BOD data. List the various remediation and protective measures to be implemented to maintain DO level (at introductory level).

.

Experiment Title	Content	Number of lecture hours	Expected outcome – upon completion of these experiments, the student should be able to:
6. Chemistry Of Air Pollution	The basics of photochemistry in air pollution.	1	 Write photochemical reactions which show the generation of various types of reactive radicals by some specific air pollutants. Understand the details of stratospheric ozone chemistry and the
	Chemistry of stratospheric ozone and the ozone layer depletion.	2.5	chemistry of ozone depletion.Write the nomenclature of CFCs.
	The chemistry of smog	1	 Know the definition of smog and the various factors that would initiate formation of smog. Write the reactions involved in the formation of smog that also includes the role of NOx, hydrocarbon and peroxylacetylnitrate (PAN).
	The chemistry of acid rain	1	 Comprehend the formation of acid rain via conversion of SO₂ and NO_x into its respective sulphuric and nitric acid. The adverse impact of acid rain.
7. Meteorology Of Air Pollution	Basics of meteorology	1	Understand the meaning of air mass, air fronts, coriolis force, boundary layer, friction within boundary layer, wind profile and wind rose
	 Vertical air movement ,adiabatic lapse rate, atmospheric stability and maximum mixing height 	2.5	 Comprehend the concepts of air vertical movement and adiabatic lapse rate, the definition of air stability, and the relation between temperature profiles, lapse rate and atmospheric stability. Know the effect of mixing height and inversion on air pollution.
	Types of plume	0.5	Understand how looping, coning, fanning lofting, fumigation and trapping plumes are generated.

Experiment Title	Content	Number of lecture hours	Expected outcome – upon completion of these experiments, the student should be able to:
8. Dispersion Of Air Pollutants	 Derivation of Gaussian dispersion equation Pasquill-Gifford plots 	1 0.5	 Understand how Gaussian dispersion equation is derived. Derive various specific equations from the general equation. Use Pasquill-Gifford plots for the estimation of the vertical and horizontal dispersion coefficients for use in Gaussian dispersion
	 Applications of dispersion models 	1	 equation. Use the Gaussian dispersion equation to model and predict the concentration of pollutant at various distances from its source in either x, y and z directions.
	Line source	0.5	• Derive the line-source equation from the Gaussian dispersion equation and to apply it for modeling air pollutants generated by line sources such as automobiles on the highway.
	TOTAL	33	