KIE 355/3 – Industrial Colourants

Course Objective: To know the concept of colour and various types coloured chemicals and dyes and understand their applications the manufacturing industries.

Topic	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
Basic Concepts of Colour	 Electromagnetic spectrum and visible light Colour vision and colour perception Specification and measurement of colour Absorption spectrum Reflectance spectrum Fluorescent molecules Colour mixing 	5	 Identify the colour sequence in the visible spectrum and their respective wavelengths. Understand how colour is perceived and what factors affect the perception of colour. Differentiate between the three dimensions of colour. Understand the relationship between absorbed light and observed colours; complementary colours. Understand Beer-Lambert's Law and its use. Recognise and interpret absorption and reflectance spectra. Understand how fluorescence occurs in certain compounds. Understand the concept of colour mixing (additive and subtractive).
2. Colour and Constitution of Organic Molecules	 General structure of colorant molecules Light absorption and electronic transitions Resonance in colorant molecules The effects of change in structure on λ_{max} 	5	 Identify chromophore, auxochrome and antiauxochrome. Explain the types of electronic transition in coloured organic molecules. Understand the relationship between ΔE and λ_{max}. Understand the relationship between the length of conjugated double bonds and light absorption in the visible region. Understand the resonance concept and its importance to colorants. Write resonance structures for organic colorants. Understand the effects of substituent groups on λ_{max}. Identify donor and acceptor groups. Understand the terms bathochromic, hypsochromic, hyperchromic and hypochromic.

F:/OBL KIE 355/ZZH/sm/04/07/2008 Page 1 of 4

Topic	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
3. Classification of Colorants	 Types of colorants Chemical classes of dyes and pigments Application classes of dyes Types of textile fibres Chemical interaction between dyes and fibres 	2	 Explain the difference between dyes and pigments. Recognise and draw the parent structure of each class of colorants. List the ten application classes of dyes and match them with the suitable fibres. Recognise and explain the chemical forces that are responsible for the dye – fibre interaction.
4. Azo Dyes and Pigments	 Geometrical isomerism and tautomerisation Synthesis of azo compounds Strategies for synthesis Schematic representation of azo colorants 	5	 Explain the phenomenon of photochromism and tautomerism in azo compounds. Write the diazotisation and coupling mechanisms. Recognise the structural characteristics of coupling components. Identify coupling sites. Write the structure of azo compounds formed from a primary amine and different coupling components. Plan a synthetic strategy to obtain an intended azo compound. Name an azo compound using the Winther's code or write the possible structure based on the the Winther's code.
5. Carbonyl Dyes and Pigments	AnthraquinoneIndigoidFluorescent dyesUses	2	 Recognise the basic structure of anthraquinone and indigo colorants. Understand the importance of H-chromophore system in indigo. Explain the effects of substituent groups on λ_{max}. Recognise carbonyl colorants with fluorescent properties.

F:/OBL KIE 355/ZZH/sm/04/07/2008

Topic	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
6. Phthalocyanine, polyene, Polymethine and Arylcarbonium Ion Dyes and Pigments	Structure and propertiesUses	3	 Recognise the basic structure of phthalocyanine. Explain the effects of substituents and crystal structure on the colour of phthalocyanine. Recognise the characteristic structural features of polyene, polymethine and aryl carbonium ion colorants. Explain the effects of substituent groups on λ_{max}. Know the outstanding features of these colorants and their main use in industries.
7. Chemistry and Application of Synthetic Dyes	 Application classes of synthetic dyes (acid, direct, vat, sulphur, disperse, azoic, basic, mordant, metal-complex) General structure Application methods Textile fibres Mechanism of interaction with textile fibres 	7	 Write the structure of dyes from each class. Recognise the important structural features of each dye class. Explain the method of application for each class. Write the structure of several important textile fibres. Identify the suitable fibres for a given dye class and understand the interaction mechanism between them. Understand the good and the bad properties of each dye class.
8. Reactive Dyes (3 lectures)	 General structure Types of reactive systems Application methods Bonding mechanism with fibres Hydrolysis of reactive dyes 	3	 Write the structure of several reactive systems. Recognise the structure of reactive dyes by its reactive system. Explain the dyeing method and the importance of base in its application. Write the reaction mechanism between dye and fibre. Understand the good properties of reactive dyes. Know the problems associated with reactive dyeing.

F:/OBL KIE 355/ZZH/sm/04/07/2008 Page 3 of 4

Topic	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
9. Pigments	Properties of pigmentsOrganic pigmentsInorganic pigmentsApplication method	2	 Write the structure of organic and inorganic pigments. Understand the two important requirements of a pigment. Explain methods of obtaining pigments from dyes. Compare the properties of organic and inorganic pigments. Explain the method of application in industries.
10. Functional Colorants	Dyes for LCDLaser dyesDyes for solar cellChemichromisme	2	 Identify dyes or pigments suitable for special applications. Understand how these colorants function. Explain the chemichromisme term.
	TOTAL	36	

F:/OBL KIE 355/ZZH/sm/04/07/2008