KIT 355/2 – Unit Operations Practical

Course Objective : To acquire skill in several unit operations in an open laboratory concept. Students are required to investigate and understand several industrial processes.

Experiment title	Content	Number of laboratory hours	Expected outcome: upon completion of the experiments, the student should be able to:
1. Static Mixer	 Introduction of statistical analysis in a unit operation. 	3	 Understand the application of statistics in unit operations.
2. Filtration	 Introduction of a separation technique 	3	 Understand the concepts of separation using the filtration technique.
3. Fractional Distillation of Crude Oil	 Separation of a local crude oil sample into its components by using a simple distillation method Characterization of the components by GC-method Introduction of a simple material balance 	3	 Understand that crude oil contains hydrocarbons of different chain lengths, which have progressively higher boiling points.
4. Spray Drying	 Determination of flow number (FN) and mean drop diameter for a sprayed clay suspension 	3	 Understand that water can be removed effectively from a suspension of solid particles by spraying the mixture into a vessel containing hot gas.

Experiment title	Content	Number of laboratory hours	Expected outcome: upon completion of the experiments, the student should be able to:
5. Flow of Rheology	 Determination of the viscosity of polymer solutions as a function of polymer Estimation of the molecular mass of the polymer 	3	 Use a Hoeppler viscometer or falling ball viscometer for measuring viscosity.
6. Concentric Tube Heat Exchanger	 Investigation of the characteristics of concentrate tube heat exchanger 	3	Use the concentric tube heat exchanger by parallel and counter current flow.
7. Centrifugal Separation	 Introduction of the separation technique that is commonly used in industries Discussion of the factors that influence the efficiency of separation 	3	Understand the concept that separation can be enhanced by increasing the gravitational acceleration mechanically using a centrifuge.
8. Gas Absorption Column	 Investigation of gas to liquid mass transfer using the gas absorption column 	3	Familiarize with the mass transport phenomenon across two different phases.
	JUMLAH	24	