KTE 311/3 – Selected Topics In Inorganic Chemistry

Course Objectives :1) To learn about cluster compounds, cage compounds and transition metal cluster complexes and their physical and chemical properties.

- Expected outcome upon completion of this course, the student should Topic Content Number of lecture be able to: hours • Know the concept and structural basis of cluster formation from the 1. Main Boron clusters 12 Group Definition of borane and elements. Cluster, Cage • Draw the 3D structure of cluster compounds. borohydride clusters and Ring Classification of borane and • State the point group symmetry of clusters. Compounds borohydride clusters according to Classify the cluster compounds as closo, nido or arachno according to Wade Wade system. Molecular orbitals of borohydride • Know the LUMO and HOMO and the relative molecular orbital energy levels of Borohydride Cluster Compounds. clusters • Synthesize higher borane and borohydride compounds from commercially Synthesis and structure of borane compounds available diborane. Characterization of boron, borane • Determine the structure of cluster compounds. • Interpret the ¹³B NMR spectrum. and borohydride compounds using ¹³B NMR • Convert borane and borohydride compounds to metaloborane compounds. Metaloborane cluster • Convert borane and borohydride compounds to carborane compounds. • Know the definition of Cage Compound. Carborane compounds • Simple cage compounds such as • Know the basis for the formation of cage compounds. allotropes of phosphorus • Write the name and structure of cage compounds. • Oxides and sulphides of • Describe the bonding theory in cage compounds. • Compare the structure and bonding in borazine and cyclotriphosphazene phosphorus • Oxides and sulphides of arsenic compared to that of benzene. • Inorganic analogues of benzene: • Compare the physical and chemical properties of borazine and borazine and cyclotriphosphazene cyclotriphosphazene to those of benzene. • Synthesis of borazine, Describe cycloborazine the synthesis of borazine. and cycloborazane and hexachlorocyclotriphosphazene from commercially available starting cyclotriphosphazene materials. • The structure and bonding in Draw the structures of the tub and crown conformations of borazine and cyclotriphosphazene tetracyclotriphoshazene.
- 2) To learn about chemistry of halogens and group 15 elements.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
	 Tetracyclotriphoshazene Anionic cyclic silicates Anionic cyclic metaphosphate Nitrogen-sulphur ring compounds Inorganic homocyclic systems 		 Draw the projection of Si₃O₉⁶⁻ and those of higher silicates. Separate mixtures of metaphosphates using preparative thin layer chromatography in two dimensions. Describe the structure bonding and synthesis of nitrogen-sulphur ring compounds. Give examples of selenium, phosphorus and inorganic carbonyl homocyclic systems.
2. Transition Metal Cluster Complexes and Chemistry of Halogen and Group 18 Elements	 The physical characteristics of First, Second and Third Row Transition Elements Cluster compounds of Nb and Ta Cluster compounds of Re Cluster compounds of Fe, Ru and Os Metal-metal bond Two-centered multiple bond Physical properties, extraction and uses of halogens Synthesis of halide compounds Structure, bonding and reactions of halide compounds Interhalogen compounds Halogen oxides and oxoanions Halogen compounds with variable oxidation states ranging from -1 to +7 Physical characteristics of rare gases Chemistry of xenon 	12	 Relate the physical characteristics of transition metals to their chemical reactivities. Determine the bond order of the bonds in transition metal cluster compounds. Describe the structure and bonding in transition metal cluster compounds. Use the 18 electron rule to predict the stability transition metal complexes. Use the Valence Bond Theory to explain the existence of metal – metal two centered multiple bond. Correlate the physical properties of the halogens with the reactivities of the elements in particular the oxidation states. Describe the synthesis of metal and organic halides. Draw the structures and describe the bonding in bridged dimeric and tetrameric halide compounds. List all the polyhalide and interhalogen compounds together with their structures as predicted by VSEPR Theory. Describe the synthesis of halogen compounds with the halogens having oxidation states ranging from -1 to +7. Relate the physical characteristics of rare gases with their chemical reactivities.

Торіс	Content	Number of lecture hours	Expected outcome – upon completion of this course, the student should be able to:
3. Group 15 Elements with Emphasis on Phosphorus- Nitrogen Compounds	 Introduction to the group 15 elements: nitrogen, phosphorus, arsenic, antimony and bismuth Hydrides, halides, oxohalides, oxides and oxoacids of the group 15 elements Nitrogen and phosphorus chemistry Phosphazene chemistry Synthesis of phosphazenes Structural characterization on cyclic phosphazenes 	12	 Know some general features and trends of the physical and chemical properties of the group 15 elements. Also know their general occurrence, extraction and uses. Know the types and stabilities of the hydrides, halides and oxoacids of the group 15 elements. In particular, know the important reactions of PCl₃ and PCl₅. Understand the principal factors responsible for the differences between nitrogen and phosphorus chemistry. Understand that a phosphazene unit comprises P(V) doubly bonded to N(III) and with additional two substituents on the former element. Understand the variation in chemical bonding and reaction of hexachlorocyclotriphosphazene [N₃P₃Cl₆] as compared to that of hexachlorobenzene [C₆Cl₆]. Know the general physical properties of phosphazene-based compounds. Understand the various methods for the preparation of cyclic, oligomeric (inclusive of cyclolinear and cyclomatric) and polymeric phosphazene-based compounds. Introduction to ³¹P NMR spectroscopy and its utilization in structural elucidation of cycloriphosphazenes.
	TOTAL	36	