## UNIVERSITI SAINS MALAYSIA

## First Semester Examination Academic Year 2003/2004

#### October 2003

# KAA 501 – Quality Control in Chemistry

Time: 3 hours

Please make sure this paper consists of TEN printed pages before answering the questions.

## **SECTION A**

Questions 1, 2 and 3 are COMPULSORY.

## **SECTION B**

Choose TWO questions from questions No. 4 - 7.

Answer FIVE questions. Only the first five questions answered by the candidate will be marked.

## **SECTION A**

1. (a) (i) Describe the importance and the type of inspection in the sampling plan for fertilizers from a manufacturing factory.

(6 marks)

(ii) Differentiate between the sampling operation and analysis by using an appropriate example.

(4 marks)

(b) Mr Muthu is an officer in a cooking oil manufacturing company who responsible to ascertain whether the manufacturing of cooking oil is acceptable or not.

The inspection on the presence of A, B and C components carried out on 2,500 units had been recorded. The results with regards to the number of units which deficient in A, B or C components are shown as follows:

| Unit number | A | В | C |
|-------------|---|---|---|
| 50          | ✓ | × | × |
| 12          | × | ✓ | × |
| 7           | × | × | ✓ |
| 21          | × | ✓ | ✓ |

Whilst ✓ sign indicates the component fulfill the acceptance level, the × sign suggests that it is not accepted or deficient.

- (i) How much percent nonconformity?
- (ii) How much non-conformities per 100 units?
- (iii) Suggest the minimum number of samples to be taken for inspection.

(10 marks)

2. You are asked to analyze the level of DDT, a pesticide, in sediments collected from the bottom of a lake. Discuss in detail the necessary quality controls that are required for this purpose. Pick a suitable equipment that you think fit for the purpose and explain your selection based on various factors discussed in class.

(20 marks)

3. Hazard Analysis Critical Control Point (HACCP) quality system which is widely used in the food processing industry has proven to be a comprehensive product quality assurance system. There are views which indicate what such similar principles can be further adapted to the traditional medicine OR the food supplement manufacturing facilities.

Write an essay to discuss the potential use of HACCP to the above said industries. Your essay must include issues such as the following:

- The main elements of HACCP can be adapted to the traditional medicine and food supplement manufacturing facilities.
- Advantages and benefits found in HACCP system
- The expertise and knowledge enhancement of staff in the implementation of HACCP system.
- Involvement of a laboratory control system as a support to the HACCP.
- Relationship between a system which gives emphasis on product quality control scheme and the HACCP system.

(20 marks)

#### **SECTION B**

4. (a) Study on the trace metal M in a river has been carried out. The results are shown as follows:

| Sample | Concentration, ppm |      |      |      |  |  |  |  |  |
|--------|--------------------|------|------|------|--|--|--|--|--|
| 1      | 0.32               | 0.30 | 0.29 | 0.33 |  |  |  |  |  |
| 2      | 0.28               | 0.26 | 0.29 | 0.28 |  |  |  |  |  |
| 3      | 0.30               | 0.27 | 0.29 | 0.26 |  |  |  |  |  |
| 4      | 0.34               | 0.30 | 0.31 | 0.30 |  |  |  |  |  |
| 5      | 0.29               | 0.28 | 0.30 | 0.33 |  |  |  |  |  |
| 6      | 0.25               | 0.26 | 0.31 | 0.33 |  |  |  |  |  |

- (i) Calculate: standard deviation for each sample, value of betweensample estimate and value of within-sample estimate.
- (ii) Explain the two characteristics which affect the sample variance

(16 marks)

...4/-

- (b) Categorize the type of the following examples with an appropriate reason.
  - (i) Cans of foods kept in a lorry.
  - (ii) Air surrounding the Penang International Airport.

(4 marks)

5. An aquaculture farm took water from a stream and returned it after it has been circulated through the fish ponds. The owner thought that this technique would not pollute the stream since there was little organic matter in the effluent. He then sent the influent and effluent water samples for BOD analysis and the results are given in the table below:

| Influent BOD | Effluent BOD |
|--------------|--------------|
| 10.2         | 9.7          |
| 10.7         | 9.0          |
| 10.5         | 10.2         |
| 9.9          | 10.3         |
| 9.0          | 10.8         |
| 11.2         | 11.1         |
| 11.5         | 9.4          |
| 10.9         | 9.2          |
| 8.9          | 9.8          |
| 10.6         | 10.2         |

- (i) Are there outliers within each set of given data? Perform the analysis using modified z score method.
- (ii) Show whether there is a pollution or not caused by the ponds using the method of null hypothesis.

( 20 marks ) ...5/-

6. (a) Two examples of control charts are given below. States specific pattern exhibited by each chart. Suggest possible causes that create that specific pattern



(b) Cation Exchange Capacity (CEC) values (mmol/kg) of a control sample is determined in duplicate. Develop X-bar and R-bar control charts using the data provided. Comments on the control charts obtained based on the stability of the analytical process.

| and the second s |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2    |
| 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7  |
| 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2 |
| 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.1 |
| 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.3 |
| 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1 |
| 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.6 |
| 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.7 |
| 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.5  |
| 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.4  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

(12 marks)

- 7. Write a short explanation for the following statements:
  - (a) Continuous training and the elevation of the human resources skills is one of the important aspects of all form of quality management system as practiced by accredited laboratories.
  - (b) The relationship between a quality laboratory management system and the organisation's effort to manage its intellectual property.
  - (c) Laboratory management can be classified into three main issues, i.e. (i) Prior to Analysis, (ii) During the Analysis and (iii) Post Analysis. Describe the salient points as per required by an accredited laboratory.
  - (d) The main elements in the preparation of a generic accredited laboratory.
  - (e) Differences between the scheme accredited for ISO 17025 and ISO G 25.

(20 marks)

0000000

# FACTORS FOR COMPUTING LIMITS FOR X BAR AND R CHARTS

| Sample<br>Size | For<br>Averages | For Ran        | ges            | Standard<br>Deviation |
|----------------|-----------------|----------------|----------------|-----------------------|
| n              | A <sub>2</sub>  | D <sub>3</sub> | D <sub>4</sub> | d <sub>2</sub>        |
| 2              | 1.88            | 0              | 3.29           | 1.13                  |
| 3              | 1.02            | 0.             | 2.58           | 1.69                  |
| 4              | .73             | 0              | 2.28           | 2.06                  |
| 5              | .58             | 0              | 2.11           | 2.33                  |
| 6              | .48             | 0              | 2.00           | 2.53                  |
| 7              | .42             | 0              | 1.92           | 2.70                  |
| 8              | .37             | .14            | 1.87           | 2.85                  |
| .9             | .34             | .18            | . 1.82         | 2.97                  |
| 10             | .31             | .31            | 1.78           | 3.08                  |



| . (- |              |          |              |                 |           |                | 0           |          | en de la companya de | 2000         |         |                 |                |          |                 |
|------|--------------|----------|--------------|-----------------|-----------|----------------|-------------|----------|----------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------|----------------|----------|-----------------|
|      | df\p         | 0.40     |              | 0.25            | 0.10      | 0              | 0.05        |          | 0.02                                                                                                           | 5            | 0.01    |                 | 0.00           | 5        | 0.0005          |
|      | 1            | 0.3249   | 20 1         | 1.00000         | 3.0776    | 584            | 6.3137      | 52       | 12.706                                                                                                         | 20           | 31.820  | 52              | 63.656         | 574      | 636.619         |
|      | 2            | 0.2886   | 75 C         | ).81649         | 7 1.8856  | 518            | 2.91998     | 36       | 4.3026                                                                                                         | 5            | 6.9645  | 6               | 9.9248         | 34       | 31.5991         |
|      | 3            | 0.2766   | 71 0         | .76489          | 2 1.6377  | 44             | 2.35336     | 53       | 3.1824                                                                                                         | 5            | 4.5407  | 0               | 5.8409         | 1        | 12.9240         |
|      | 4            | 0.2707   | 22 0         | .74069          | 7 1.5332  | 06             | 2.13184     | 7        | 2.7764.                                                                                                        | 5            | 3.7469  | 5               | 4.6040         | 9        | 8.61:03         |
|      | 5            | 0.2671   | 31 0         | .72668          | 7 1.4758  | 84             | 2.01504     | 8        | 2.57058                                                                                                        | 3            | 3.3649  | 3               | 4.0321         | 4        | 6.8688          |
| 1    | •            |          | -            |                 |           |                |             |          |                                                                                                                |              |         |                 |                |          |                 |
|      | 6            | 0.26483  | 5 0.         | 717558          | 1.4397    | 56             | 1.94318     | 0        | 2.44691                                                                                                        | $\exists$    | 3.14267 | , [             | 3.70743        | 3        | 5.9588          |
|      | 7            | 0.26316  | 7 0.         | 711142          | 1.41492   | 24             | 1.89457     | 9        | 2.36462                                                                                                        | ᅷ            | 2.99795 | <del> </del>  - | 3.49948        | =        | 5.40 <b>7</b> 9 |
|      | 8            | 0,26192  | 1 0.         | 706387          | 1.39681   | 믁;}            | 1.859548    | ᆛ누       | 2.30600                                                                                                        | ┵            | 2.89646 | ᆛ               | 3.35539        |          | 5.0413          |
|      | 9.           | 0.26095  | 5 0.7        | 702722          | 1.38302   | 9              | 1.833113    | ╡╞       | 2.26216                                                                                                        | 러누           | 2.82144 | 4               | .24984         | ᆉ        | 4.7809          |
| 1    | 0            | 0.26018  | 0.6          | 599812          | 1.37218   | ╡              | 1.812461    | ╬        | 2.22814                                                                                                        | ┽늗           | 2.76377 | 러는              | .16927         | ┵        | 4.5869          |
|      |              |          |              |                 | 1         | _  _           |             |          |                                                                                                                |              |         | <u></u>         | .10,27         | <u> </u> | 4.5005          |
| 1    | 1 0          | 0.259556 | 0.6          | 97445           | 1.363430  | 0 1            | 795885      | 1/2      | .20099                                                                                                         |              | .71808  | 1/2             | .10581         | 76       | 1.4370          |
| 12   | 2 0          | .259033  | ╬            | 95483           | 1.356217  | 쒸는             | .782288     | 卝        | .17881                                                                                                         | ╬            | .68100  | ╡┝═             | 05454          | ≒⊨       | 3178            |
| 13   | 0            | .258591  | ╬─           | 93829           | 1.350171  | ╬              | .770933     | ╬        | .16037                                                                                                         | ╬            | .65031  | ╡┝═             | 01228          | ╡┝       |                 |
| 14   | = =          | .258213  | <del> </del> | 92417           | 1.345030  | ╬              | .761310     | 는        | 14479                                                                                                          | ╬            | .62449  | ╬═              | 97684          | ╬        | .2208           |
| 15   | 러는           | 257885   | ╬──          | 91197           | 1.340606  | ╬              | 753.050     | -        | 13145                                                                                                          | ╬            | 60248   | ╬═              | 97084<br>94671 | ╬        | .1405           |
|      |              |          |              |                 | 1.0 10000 | 1              | 755.050     |          | 13143                                                                                                          | 12.          | 00246   | .2.             | 940/1          | 4        | .0728           |
| 16   |              | 257599   | 0.69         | 0132            | 1.336757  | 1              | 745884      | <u> </u> | 11001                                                                                                          |              | 500.40  | 11-0            |                | ī.       | -               |
| 17   | ┥—           |          |              |                 |           | <u> </u>       |             |          | 11991                                                                                                          | <u> </u>     | 58349   | <u> </u>        | 2078           | ╬        | 0150            |
| 18   | 7            |          |              |                 | 1.333379  | <del>  -</del> | <del></del> |          |                                                                                                                | <del> </del> | 56693   | -               | 9823           | 3.       | 9651            |
|      |              | 257123   |              | <del></del>     | 1.330391  | _              | 734064      | _        | 10092                                                                                                          | 2.5          | 55238   | 2.8             | 7844           | 3.9      | 9216            |
| 19   | ╬═           | 256923   |              |                 | 1.327728  | =              |             |          | )9302                                                                                                          | <u> </u>     | 3948    | 2.8             | 6093           | 3.8      | 3834            |
| 20   | 0.2          | 56743    | 0.686        | 6954            | 1.325341  | 1.7            | 24718       | 2.0      | 08596                                                                                                          | 2.5          | 2798    | 2.8             | 4534           | 3.8      | 3495.           |
|      | ·<br>ir—     | 1        |              |                 |           |                |             |          |                                                                                                                |              |         |                 |                |          |                 |
| 21   | <del> </del> |          | 0.686        | <del> </del>  - | .323188   | 1.7            | 20743       | 2.0      | 7961                                                                                                           | 2.5          | 1765    | 2.83            | 3136           | 3.8      | 193             |
| 22   | 0.2          | 56432    | 0.685        | 805 1           | .321237   | 1.7            | 17144       | 2.0      | 7387                                                                                                           | 2.5          | 0832    | 2.8             | 876            | 3.7      | 921             |
| 23   | 0.2:         | 56297    | 0.685        | 306 1           | .319460   | 1.7            | 13872       | 2.0      | 6866                                                                                                           | 2.4          | 9987    | 2.80            | 734            | 3.7      | 676             |
| '    |              | 11       |              | 11-             |           |                |             |          |                                                                                                                |              |         |                 |                |          |                 |

| 27  | 0.255858 | 0.683685 | 1.313703 | 1.703288 | 2.05183 | 2.47266 | 2.77068 | 3.6896 |  |  |
|-----|----------|----------|----------|----------|---------|---------|---------|--------|--|--|
| 28  | 0.255768 | 0.683353 | 1.312527 | 1.701131 | 2.04841 | 2.46714 | 2.76326 | 3.6739 |  |  |
| 29  | 0.255684 | 0.683044 | 1.311434 | 1.699127 | 2.04523 | 2.46202 | 2.75639 | 3.6594 |  |  |
| 30  | 0.255605 | 0.682756 | 1.310415 | 1.697261 | 2.04227 | 2.45726 | 2.75000 | 3.6460 |  |  |
|     |          |          |          |          |         |         |         |        |  |  |
| inf | 0.253347 | 0.674490 | 1.281552 | 1.644854 | 1.95996 | 2.32635 | 2.57583 | 3.2905 |  |  |