

Inorganic Chemistry 1 CHEMICAL BONDING THE IONIC BONDING MODEL

LATTICE ENERGY, $\Delta H_{lattice}^{o}$

O lonic bonding also known as "electrovalen bonding", "polar bonding" "hetero-polar bonding". O lonic bonding model - transfer of electrons from metal atoms to nonmetal atoms to form ions.

O Total number of electrons lost by the metal atoms equals the total number of electrons gained by the nometal atoms.

- o To form a ionic bond metal atoms must have <u>lower</u> ionization energy [M(g) → M⁺(g) + e⁻] and non-metal must have <u>higher</u> electron affinity [X(g) + e⁻ → X⁻(g)].
 - * Ionization energy the minimum amount of energy required to remove an electron from a neutral atom = first I.E.

$$M_{g}(g) \longrightarrow M_{g}^{+}(g) + e^{-} IE_{I} = 738 \text{ kJmel}^{-1}$$

$$[Ne]_{3s}^{*} [Ne]_{3s}'$$

$$M_{g}^{+}(g) \longrightarrow M_{g}^{2t}(g) + e^{-} IE_{2} = N+50 \text{ kJmel}^{-1}$$

$$[Ne]_{3s}' [Ne]$$

$$M_{g}^{2t}(g) \longrightarrow M_{g}^{3t}(g) + e^{-} IE_{3} = 7730 \text{ kJmel}^{-1}$$

$$[Ne] [H_{2}]_{2s}^{2}_{2p}^{5}$$

* Electron Affinity - The energy change when an
electron is added to an atom
eg.
$$F(g) \longrightarrow F^{+}(g) + e^{-}$$
 $IE_{1} = 168 \text{ kJmot}^{-1}$
 $(10nizotion energy - 1st)$
 $F(g) + e^{-} \rightarrow F^{-}(g)$ $EA = -322 \text{ kJmol}^{-1}$
 $F^{-}(g) \longrightarrow F(g) + e^{-}$ $\Delta H = +322 \text{ kJmot}^{-1}$

- 1. Lattice Energy, $\Delta H_{lattice}^{\circ}$ is the enthalpy change that occurs when |mo| of ionic solid separates into gaseous ions. Na(l(s) \longrightarrow Na⁺(g) + (\overline{r} (g))
- 2. Lattice energy plays the important role in the formation of ionic compound, but it cannot be measured directly.
- 3. Lattice energy can be calculated by means of a <u>Born-Haber Cycle</u> (a series of chosen steps from elements to ionic solid for which all the enthalpies are known except the lottice energy)

DHf (formation) $(1) + \frac{1}{2}F_2(g)$ (Istep) LiF(s) $\int \int f^{st} g 2^{nd} = element \rightarrow gaseous atom `$ $\int \int f^{rd} g 4^{th} = formation of gaseous ions$ $5^{th} = ions to form solid .$ (multistep poth)

Born-Haber Cycle: NoCl (s)
Styp 1: Converting 1 nol of solid Na to superate gascaus Na
atoms involves breaking of netallic bonds so this
requires every:
Na(s)
$$\rightarrow$$
 Na(g) Δ Hreprisation = 108 kJmol⁻¹
(* This process is atomization, Δ H^a
of Cl₂ Converting 1 nol of Cl₂ nolecule to CL atoms involves
of Cl₂ $Bird breakage$ breaking covalent bonds: Bond Energy.
of Cl₂ $Bird freedom from 1 mole NaCl
 $\frac{1}{2}(R_2(g)) \rightarrow CL(g)$; Δ H = $\frac{1}{2}(Bond Energy)$
 $= \frac{1}{2}(240) kT$
 $= 120 kT$
Na
Na(g) \rightarrow Na(g) \rightarrow Na(g) the stop form
Na
Na(g) \rightarrow Na(g) \rightarrow Na(g) L H = $496 kJmol^{-1}$
(More use need only $\frac{1}{2}$ not of Cl₂ to form 1 mole NaCl
 $\frac{1}{2}(R_2(g)) \rightarrow CL(g)$; Δ H = $\frac{1}{2}(Bond Energy)$
 $= \frac{1}{2}(240) kT$
 $= 120 kT$
Na
Na(g) \rightarrow Na(g) \rightarrow Na(g) $+ e^{-1} \Delta$ H_E = 496 kJmol⁻¹
Na
Na(g) \rightarrow Na(g) $+ e^{-1} \Delta$ H_E = 496 kJmol⁻¹
(Inization of
 $an electrom - (to attain noble gas configuret
CL
 $CL(g) + e^{-1} \rightarrow CL(g)$; Δ H = $-349 kJmol^{-1}$$$

$$Ship 5.$$

$$Ship 5.$$

$$Forming Imol of the crystalline inic solid, Nacle
(negative of
Lattice Energy)
Form the gaseous ions of Na+(g) & CL+(g)
Na+(g) + CL+(g) \longrightarrow NaCL(s): $-\Delta H_{lathe}$ of Nacle
$$\begin{bmatrix} \Delta H_{lattice} @ \Delta H_{LE} @ \Delta H_{cyntal} \end{bmatrix}$$

$$inpertant-negative sign
* NaCL(s) \longrightarrow Na⁺(g) + CL⁺(g): ΔH_{lathe}

$$\int ocitive
volve.$$
Single step - Enthalpy change of the formation reaction.
$$Na(s) + \frac{1}{2}CL_{2}(g) \longrightarrow NaCL(s); \Delta H_{p}^{\circ} = -411 \text{ kJmol}^{-1}$$
Born-Haber Cycle for Sodium Chloride, NaCL.
$$\frac{Na+(g) + CL+(g)}{Ma}$$

$$\frac{Na+(g) + CL+(g)}$$$$$$

$$-\Delta H_{lattice}^{\circ} = \Delta H_{f}^{\circ} - \left(\frac{1}{2}BE + IE_{l} + EA_{lattice}\right)$$
Bond
$$Ist = Ist = affinity of CL$$

$$energy of = Ist = affinity of CL$$

$$energy of = Ist = affinity of CL$$

$$Ist = -678 \ kJ$$

$$= -678 \ kJ$$

$$\Delta H_{lattice}^{\circ} = A \ NaCL = +687 \ kJ$$

$$KJ = -678 \ kJ$$

$$KJ =$$

Prepared by V.Manoharan vmano@usm.my manovv1955@yahoo.com 04-6533888 ext 3566