Problem-solving Example 13

Write the Lewis structure for (a) TeBr_q (tellurium tetrabromide), (b) ICl_2^- (dichloroiodide ion) (c) $SCLF_5$ (d) H_3PO_4 (e) $BFCl_2$

SOLUTION

a) Te Br₄.
+ Valence electrons (total) =
$$[1 \times Te(6e)] + [4 \times Br(7e)]$$

Te
(Group 16)
Br
Br
Br
Br
Br
Te - Br
 $1 \times Remaining e's = 34 - 4(2e) = (34 - 8)e^{-1}$
Br
Br
Br
Skeleton structure
* 26e⁻ should be assign to the terminal
atom, Br
Br
Br
Br
 $1 \times 26e^{-}$ should be assign to the terminal
atom, Br
Br
 $1 \times 24e^{-}$ already assign to 4 Br atoms
Now the remaining e's = (26-24) = 2e's
* The 2e^{-} assign to the central atom, Te.
Nas the structure will be:
Br
 $1 \times 1e^{-}$
Br
 $1 \times 1e^{-}$
 $1 \times 1e^{$

acceptable for a Period-5 element.

(b)
$$ICl_2^-$$

* Total valence electrons = $[1 \times I(7e^-)] + [2 \times Cl(7e^-)] + 1e^-$
= $(7 + 1/4 + 1)e^- = 22e^-$
 $CL - I - CL$: Bonding e's = $(2bonds \times 2e^-) = 4e^-$
skeleton structure Remaining e's = $(22 - 4)e^- = 18e^-$
* $18e's$ should assign to the terminal atoms, CL
: $CL - I - CL$: $(6 \times 2) = 12e^-$ already
assign to 2 cL atoms
* Remaining e's = $(18 - 12)$
These remaining $6e's$ (3 electron pairs) are placed on
the central atom, I which can accommodate more
than eight electrons because I is from Period-5.

KTT 111 : Inorganic Chemistry 1

(d)
$$H_3 P O_4 = P O_4^{3-} + 3H^4$$
 or $P O(6H)_3$

$$F O_4^{3-3}$$
* Total no. of $= [1 \times P(5e^2)] + [4 \times O(6e^2)] + 3e^-$
 $= (5 + 24 + 3)e^- = 32e^-$
* Skeleton structure:
 $0 - P - 0 \leftarrow 4$ single bod
 $1 \qquad : Bonding e'_1 = (4 \times 2e^2) = 3e^-$
* Remaining $e'_1 = (32 - 8) = 24e^-$.
These 24 is a single to the 4 0 etoms (terminal atoms)
 $\begin{bmatrix} :0 \\ -P - 0:\\ -0:\\ -1 \\ :0: \end{bmatrix}^{3-}$
* Check the Formal Charge of each atom.
FC at $0 = 6 - 7 = -1$
 $(all 4 atom 1)$
 $are similar) (6 dets + 1/me)$
 $0 = 2.6$
 $FC af P = 5 - 4 = +1$
 $(0 = 4i + 4/mei)$
* All atoms have formal charge, therefore this structure
is not favored.
 $:0: (-1)$
 $:0: (-1)$
 $:0: (-1)$
 $:0: (-1)$
Not favored
 $(more fc on e formal charge is the charter of the favored of P = 2i j ENIOR 2i = 0$

School of Chemical Sciences, Universiti Sains Malaysia

KTT 111 : Inorganic Chemistry 1

(e) BFCl₂ * Total no. of Valence e's = [1×B(3e⁻)] + [1×F(7e⁻)] + [2×Cl(7e⁻)] = 3e⁻ + 7e⁻ + 14e⁻ = 24e⁻

* Remaining
$$e's = 24e^{-}-6e^{-} = 18e^{-}$$

Place the 18e⁻ at the terminal atoms
:F:
I FC & B = 3-3 = 0
B FC & F = 7-7 = 0
:Cl: :Cl: FC & CL = 7-7 = 0
: It is the favored structure.
B has 6e's surrounding it. So BFCl₂ is an electron-
deficient nolecule.

Prepared by V.Manoharan

vmano@usm.my manovv1955@yahoo.com 04-6533888 ext 3566

School of Chemical Sciences, Universiti Sains Malaysia

KTT 111 : Inorganic Chemistry 1