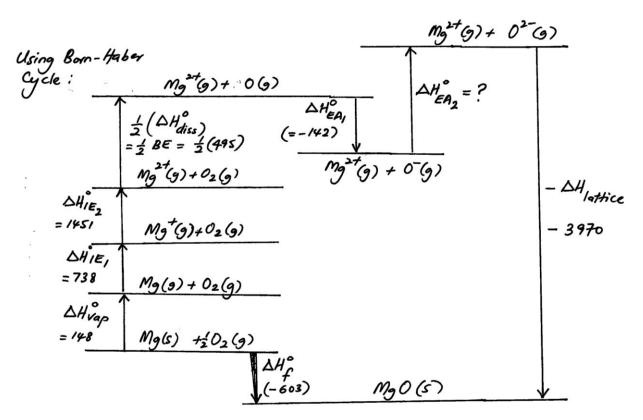
Inorganic Chemistry 1
CHEMICAL BONDING
THE IONIC BONDING MODEL
LATTICE ENERGY, $\Delta H_{lattice}^{o}$


Problem-solving Example 2

Use a Born-Haber cycle and the following data to calculate oxygen's second electron affinity. $\Delta H_{Vap}^{\circ} \text{ of } Mg = +148 \text{ kJmol}^{-1}$ $\Delta H_{IE_{1}}^{\circ} \text{ of } Mg = 738 \text{ kJmol}^{-1}$ $\Delta H_{IE_{2}}^{\circ} \text{ of } Mg = 1451 \text{ kJmol}^{-1}$ $\Delta H_{EA_{1}}^{\circ} \text{ of } 0 = -142 \text{ kJmol}^{-1}$ $\Delta H_{Iathice}^{\circ} \text{ of } Mg = +3970 \text{ kJmol}^{-1}$ $\Delta H_{Iathice}^{\circ} \text{ of } Mg0 = -603 \text{ kJmol}^{-1}$ $\Delta H_{diss}^{\circ} \text{ (of oxygen)}$

SOLUTION

Solution :

* We are asked to find the second electron affinity of oxygen:

$$(0^-(g) + e^- \rightarrow 0^{2^-}(g); \Delta H_{EA_2} = ?$$

** Note } ** Second electron affinities are all large and positive!

* The swall reaction consumes $\frac{1}{2}$ mole of O_2 for each mole of Mg. So we require $\frac{1}{2}$ the Bond energy of O_2 $\frac{1}{2}O_2(g) \longrightarrow O(g) ; \Delta H = \frac{1}{2} \times BE$

Using Hess's Law:
$$\Delta H_f^o = \Delta H_{vap}^o + \Delta H_{lE_1}^o + \Delta H_{lE_2}^o + \frac{1}{2}BE + \Delta H_{EA_1}^o + \left(\Delta H_{la+hice}^o\right) + \left(-\Delta H_{la+hice}\right)$$

$$(-603) = (+148) + (+738) + (+1451) + (\frac{1}{2} \times 495) + (-142) + \Delta H_{EA_2}^o + (-3970)$$

:.
$$\Delta H_{EA_2}^{\circ} = +924 \text{ kJmol}^{-1} \text{ (Ans)}$$

large positive value

 $O^{-}(g) + e^{-} \longrightarrow O^{2^{-}}(g)$; $\Delta H_{EA_2} = +924 \text{ kJmol}^{-1}$

Very unstable

* A large positive value of electron affinity reflects the fact that an isolated $O^{2^{-}}(g)$ is very unstable (means very reactive).

ALTERNATIVE METHOD SOLUTION:

Alternative Method (without using Born-Haber Cycle)

$$Mg(s) \longrightarrow Mg(g)$$
; $\triangle H_{vap} = 148 \text{ kJ}$
 $Mg(g) \longrightarrow Mg^{\dagger}(g) + e^{-}$; $\triangle H_{1E_1}^{o} = 738 \text{ kJ}$
 $Mg^{\dagger}(g) \longrightarrow Mg^{\dagger}(g) + e^{-}$; $\triangle H_{1E_2}^{o} = 1451 \text{ kJ}$
 $120_2(g) \longrightarrow 069$; $120 \longrightarrow 142 \text{ kJ}$
 $120_2(g) \longrightarrow 069$; $120 \longrightarrow 142 \text{ kJ}$
 $140 \longrightarrow 1$

Prepared by V.Manoharan vmano@usm.my manovv1955@yahoo.com 04-6533888 ext 3566