
Converting Frequency, Wavelength and Wave-number

Review Questions

Review Questions: Q1 • Convert all these wavelength, λ to frequency, Hz. (i) $\lambda = 397 \,\mathring{A}$ (ii) $\lambda = 355 \,\mathrm{cm}$ (iii) $\lambda = 550 \,\mathrm{nm}$ Q2 • Convert frequency, Hz to wavelength, λ (\mathring{A}) (i) $\nu = 1.21 \times 10^3 \,\mathrm{MHz}$ (ii) $\nu = 300 \,\mathrm{Hz}$ (iii) $\nu = 2500 \,\mathrm{m}^{-1}$

Problem-solving Example 3

a) Determine the wavelength, λ , wave number, $\overline{\nu}$ and the frequency, ν of wave A?

b) Determine the wavelength, A, wave number, V and the frequency, V of wave B?

Solution

Solution:

a) For wave A:
There are 5 wavelength (5 cycle-full)

Thus,
$$\lambda = \frac{(6.0 \times 10^{-3})(10^{-2})m}{5} = 1.2 \times 10^{-5}m$$

$$\overline{V} (wave number) = \frac{1}{\lambda}$$

$$\overline{V} = (\frac{1}{1.2 \times 10^{-5}m}) = 8.33 \times 10^{4} m^{-1}$$
Frequency, $V = \frac{c}{\lambda}$

$$= \frac{2.998 \times 10^{8} m^{5}}{1.2 \times 10^{-5}m}$$

$$= 2.5 \times 10^{13} s^{-1}$$

$$= 2.5 \times 10^{13} hz (Ans)$$

b) For wave B:

There are
$$2\frac{1}{2}$$
 wavelength (ie $2\frac{1}{2}$ full cycle)

Thus, $\lambda = \frac{(6.0 \times 10^{-3})(10^{-2}m)}{2\frac{1}{2}} = 2.4 \times 10^{-5}m$ (Ans)

 $\frac{\sqrt{2}}{2}$

(wave number) $\frac{1}{\lambda} = \frac{1}{2.4 \times 10^{-5}m}$
 $= 4.2 \times 10^{4} \, \text{m}^{-1}$ (Ans)

 $\frac{\sqrt{2}}{2.4 \times 10^{-5}m} = 1.3 \times 10^{13} \, \text{s}^{-1}$
 $= 1.3 \times 10^{13} \, \text{s}^{-1}$
 $= 1.3 \times 10^{13} \, \text{Hz}$ (Ans)

Prepared by V.Manoharan vmano@usm.my

manovv1955@yahoo.com
04-6533888 ext 3566