Manuscript Title: Solutions to Overcome Integrated Project Delivery Implementation Barriers: A Meta-Synthesis Approach

Authors: Zahra Kahvandi, Silvio Melhado and Marina Lapa Viana

Submitted Date: 30-Aug-2020 (1st Submission)

Accepted Date: 24-Oct-2021

DOI: https://doi.org/10.21315/jcdc-08-20-0186
Abstract: Construction projects encounter myriad problems, some of which may be connected to the project delivery model. Integrated Project Delivery (IPD) is an approach that removes the gap between the planning and construction stages of a project. Various barriers to implementation exist within the construction industry, and these can be resolved by effective solutions. Identifying and classifying these solutions is considered essential for successful project delivery. In this context, this study aims to illustrate and classify the solutions that have been proposed since the introduction of IPD as a new approach for the implementation of construction projects. In this study, a meta-synthesis approach has been used as a qualitative method, and pattern and descriptive coding and analysis have been used to analyze the data. The solutions analyzed in the meta-synthesis suggest that all stakeholders—including designers, construction engineers, construction team members, and operation and maintenance team members—each have the same responsibility to improve IPD and meet the project goals. This study is significant because it suggests important resolutions to the barriers to IPD implementation and may help construction industry stakeholders better facilitate IPD and enhance clauses of their contracts.

Keywords: Integrated Project Delivery (IPD), Barriers, Meta-Synthesis, Construction projects

INTRODUCTION

Construction projects are among the most important and costly projects in any country. They can both create jobs and impose high expenses on stakeholders.
Construction projects often lead to societal economic growth, and they also include maintenance of environmental and social sustainability. Projects should be completed to meet the needs of communities and improve quality of life, without compromising the needs of the next generation; additionally, they must be effectively designed, built, and maintained (Cheng, 2012). The steps needed to implement a construction project will be successful when a coherent group of stakeholders works together. Many available methods do not promote integration of project stakeholders. To improve project success, methods and systems for construction, operation, and maintenance can integrate the design and planning phases from construction and maintenance phases, generating cost and time savings (Ghassemi and Becerik-Gerber, 2011). One of the most important project delivery methods is Integrated Project Delivery (IPD). It can be acknowledged that “the concept of IPD is an effective integration for project owners to prevent problems in the delivery of construction projects” (Arbabi et al., 2017).

IPD’s initial instructions and guidelines were developed by the American Association of Architects in 2007 (AIA, 2007). The IPD method is a project delivery approach with the following features: 1) risk/reward sharing, 2) early participation of project stakeholders, 3) replacing the tender stage with purchase stage, without traditional tender conditions, and 4) postponement of profit payment until project completion (Elghaish, Abrishami and Hosseini, 2020). This delivery method attempts to bridge the gap between the planning and construction phases of construction projects (Mihic, Sertic and Zavrski, 2014). Despite the benefits of IPD, some important obstacles have prevented it from being fully implemented. In some country contexts, obstacles can result in harm in the quality, time, cost, and main goals of the project. Thus, resolving the primary obstacles has been a concern for IPD executives in recent years. Numerous case studies have been done in an attempt to overcome such issues (Kahvandi et al. 2018; Alinezhad et al., 2020).

Numerous studies have discussed obstacles to IPD implementation (Kahvandi et al., 2018; Kahvandi et al., 2019b), and some case studies have presented project-specific solutions. However, so far, no research has been conducted to review all studies that identified solutions to IPD implementation. Thus, this study aims to illustrate and classify the solutions proposed in several studies conducted since the introduction of IPD as a new approach to construction project implementation. This broad view of potential solutions will help researchers and stakeholders in the construction industry to strengthen their solutions and utilize proven methods for IPD implementation. Therefore, this study seeks to answer: What are some of the solutions to resolve the obstacles to IPD implementation?
from industry owners, and how will these solutions improve IPD implementation? This study is significant in that it will help stakeholders of the construction industry develop and undertake IPD. Moreover, it will aid in removing obstacles to IPD implementation by providing information to develop contract improvement tools. Furthermore, the solutions outlined in this study will be organized into major categories of construction domains to facilitate their examination, and in turn, will be organized as opportunities for IPD implementation by different stakeholders.

LITERATURE REVIEW

In this section, the definitions and principles related to IPD will be reviewed, as well as IPD barriers and the meta-synthesis approach.

Integrated Project Delivery (IPD)

In the 1940s, different construction delivery systems were being developed for use and improvement of projects. At this time, the design-bid-build approach had already been widely used in the United States for decades (Becerik-Gerber, DDes and Kent, 2010; Pishdad-bozorgi and Beliveau, 2017). Although this methodology was widely used, issues related to inefficiency, fragmentation, and resource waste were causing client dissatisfaction with projects’ final results (Viana et al., 2020). For a partial solution, a new method was implemented in the 1960s: the construction management approach. This method focuses on supervision and control of teams and information; however, it was still considered a partial solution because of frequent issues still occurring at the time (Hamzeh et al., 2019). In the 1990s, the design-build method was created, aiming to put an end to all previous issues by using a single contract to provide both designing and building services. Unfortunately, the quality criteria decreased drastically when compared with previous methods (Becerik-Gerber, DDes and Kent, 2010; Hamzeh et al., 2019; Kahvandi et al., 2020). As the construction sector is experiencing major transformations and improvements due to rapid development, such traditional delivery methods may be unable to succeed as a result of extended project durations, cost overruns, low quality, frequent safety incidents, disputes, goal inconsistency, change orders, rework, adversarial relationships, arbitrations, and litigations (Durdyev et al., 2019; Jadidoleslami et al., 2019; Temel et al., 2019).

To finally overcome such issues, Viana et al. (2020) outline how IPD has surged as a systematic and integrated construction process that improves the project through early involvement, multi or poly-party contracts, open communication, collaboration, goal-setting, team alignment, and building information modeling (BIM) technology. Additionally, projects implemented through IPD foster a shared risk and reward environment (Kahvandi et al., 2017; Jadidoleslami et al., 2019; Viana et al., 2020). El Asmar, Hanna and Loh (2013) define the method as “a
delivery system distinguished by a multiparty agreement and the very early involvement of key participants." Jadidoleslami et al. (2019) explain how the IPD method has focused on a win-win relationship and common interests between contractors. It is also important to mention that the AIA recommended that for a proper IPD implementation, some essential principles must be understood and applied through each of its seven phases: optimize the whole, not the parts; early and clear goal definition; collaboration; integration of people and systems; joint ownership; respect; trust; transparency; a safe environment; shared risk and reward; and up-to-date technology (Cheng, 2012). Table 1 illustrates the attributes of IPD characteristics and principles.

Table 1. The attributes of Integrated Project Delivery (Adapted (Mohamed Salleh et al., 2019))

Main Team Early Participation	The main team participation at an early stage enhances improved and innovative ideas;
Collaboration	Enhance collaboration with iterative and immediate face-to-face communication;
Team Ideas Support	The culture promotes innovation and creative thinking environment;
Sharing	Key participants sharing the pain and the gain of the project performance;
Financial Transparency	Transparency among the contracting parties in decision making and cost savings;
Joint Decision Making	The collaborative mindset to make any essential decision;
Trust & Accountability	Trust enhances collaboration between parties and building accountability;

Benefits of IPD include cost, time, quality, and the ability to improve on unforeseen issues during project implementation (Collins and Parrish, 2014; Fischer et al., 2017). Some of these benefits could be related to feasible estimations, fewer project changes, minimum waste, better communication, integration, and common goals, as well as an increase in quality (Collins and
Parrish, 2014; El Asmar, Hanna and Loh, 2015). Because of these benefits, Jadidoleslami et al. (2019) state, the project goals and objectives can be achieved faster, cheaper, and with less waste.

For instance, The Tønsberg Project was the first IPD project carried out in Norway, in the Norwegian healthcare sector. It consists of a 31,000 square meter somatic building and a 12,000 square meter psychiatry building, at a cost of approximately $370 million USD. The Tønsberg Project embraced IPD and implemented all the theoretical IPD elements presented: technology, contract, processes, and culture (Aslesen et al., 2018). Experiences from the project highlight how IPD may facilitate a higher level of common understanding and collaboration between key project participants. Another case study highlighting the benefits of IPD is the Conference Center Project, a building project that consists of a conference center and a multimedia resource center in Jerusalem. The conference center is approximately 7,014 square meters. The project team was involved in different stages and worked individually as IPD functional groups. The use of IPD principles enabled integration at the project level. Additionally, IPD in this case was useful to enhance the performance of the construction supply by encouraging progression and coordination and reducing corrective iterations (Mesa, Molenaar and Alarcón, 2020).

In addition, Durdyev et al. (2019) describe how IPD could increase success in constructing greener buildings due to stakeholders’ early involvement and trust, which are essential elements for delivering green building projects (Durdyev et al., 2019; Chen and MingMak, 2021). Furthermore, Kraatz et al. (2014) highlight how all team members in a project bring knowledge, encouraging a culture of risk management and cost-efficient processes that impact the final project quality (Kraatz, Sanchez and Hampson, 2014).

IPD Barriers

Despite all the aforementioned benefits, according to Kahvandi et al. (2019), the number of construction companies utilizing IPD is still relatively small (Durdyev et al., 2019; Kahvandi, Saghatforoush, Mahoud, et al., 2019). The current numbers could be attributed to potential negative barriers that exist in applying the IPD method, where a successful delivery relies on establishing several mechanisms, and a failure in any of those could create major barriers to overcome (Sun et al., 2015). These failures could include: flawed mechanisms in risk-sharing and profit distribution, ineffective decision-making systems, procurement difficulties, lack of trust, inadequate training, and disagreement on liability waivers, among others (Kent and Becerik-Gerber, 2010; Durdyev et al., 2019). When it comes to IPD implementation, developed countries possess some advantages due to access to more sophisticated technology. In developing countries, the situation is reversed, and the current barriers are more impactful (Ghassemi and Becerik-Gerber, 2011; Cheng et al., 2018). Although the barriers are prevalent, a small number of studies exploring how to overcome such issues in developing countries
Solutions to Overcome IPD Implementation Barriers

have been conducted (Hamzeh et al., 2019). One example from Iran emphasizes additional attention that must be taken when transitioning from traditional project methods to IPD, by aligning IPD regulations and the required infrastructure while also fostering collaboration culture (Noghli, Saghatforoush and Forghani, 2018). Another study in Malaysia corroborated the negative impacts in resisting to change from traditional methods to IPD (Osman et al., 2015).

Several studies conducted in developed countries and emerging markets describe barriers to IPD implementation (Durdyev et al., 2019). For an illustration of this literature, Durdyev et al. (2019) created a table providing a list and typology of barriers, which is divided into six categories. Table 2 illustrates this.

Table 2. Integrated Project Delivery Barriers (Adapted (Durdyev et al., 2019))

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment and involvement (CI)</td>
<td>• Lack of commitment to quality throughout construction;</td>
<td>(CEC, 2015)</td>
</tr>
<tr>
<td></td>
<td>• Lack of commitment by government officials;</td>
<td>(CEC, 2015; Hamzeh et al., 2019)</td>
</tr>
<tr>
<td></td>
<td>• Lack of commitment by the owner to an integrated approach;</td>
<td>(AIA, 2007; Atkinson and Westall, 2010)</td>
</tr>
<tr>
<td></td>
<td>• Contractor’s late engagement in design;</td>
<td>(Ghassemi and Becerik-Gerber, 2011)</td>
</tr>
<tr>
<td></td>
<td>• Reluctance to cross-disciplinary input in an early design stage;</td>
<td>(Ghassemi and Becerik-Gerber, 2011)</td>
</tr>
<tr>
<td></td>
<td>• Lack of tradespeople’s involvement;</td>
<td>(Azhar, 2014)</td>
</tr>
<tr>
<td></td>
<td>• Lack of operator’s involvement.</td>
<td>(Azhar, 2014)</td>
</tr>
<tr>
<td>Communication and collaboration (CC)</td>
<td>• Lack of well-conducted kick-off meetings;</td>
<td>(CEC, 2015)</td>
</tr>
<tr>
<td></td>
<td>• Lack of communication between stakeholders;</td>
<td>(AIA, 2007; Atkinson and Westall, 2010)</td>
</tr>
<tr>
<td></td>
<td>• A poor relationship between stakeholders;</td>
<td>(Atkinson and Westall, 2010)</td>
</tr>
<tr>
<td></td>
<td>• Lack of spirit of collaboration in each team member;</td>
<td>(Mesa, Molenaar and Alarcón, 2019)</td>
</tr>
<tr>
<td></td>
<td>• Activity delays due to disputes;</td>
<td>(Mesa, Molenaar and Alarcón, 2016)</td>
</tr>
<tr>
<td></td>
<td>• Lack of utilization of BIM;</td>
<td>(CEC, 2015)</td>
</tr>
<tr>
<td></td>
<td>• Late and/or unclear decisions by the owner;</td>
<td>(Mesa, Molenaar and Alarcón, 2019)</td>
</tr>
<tr>
<td></td>
<td>• Unclear expectations by owner.</td>
<td>(Azhar, 2014)</td>
</tr>
<tr>
<td>Skills and experience (SE)</td>
<td>• Lack of joint decision-making skills;</td>
<td>(AIA, 2007; Atkinson and Westall, 2010)</td>
</tr>
<tr>
<td></td>
<td>• Lack of IPD experience of the</td>
<td>(Mesa, Molenaar and Alarcón, 2016)</td>
</tr>
</tbody>
</table>
The barriers identified in the study are classified into six categories: commitment and involvement (CI); communication and collaboration (CC); skills and expertise (SE); motivation and promotion (MP); knowledge and information (KI); and project execution (PE) (Durdyev et al., 2019). When it comes to commitment and involvement (CI), the lack of CI in decision-makers directly impacts the CC category with inefficiency among practitioners regarding exchanging and implementing lessons learned. Barriers in SE are related to the assimilation of new skills and competencies to support IPD. KI barriers are related to the concept of respect as a necessary catalyst to usage. Finally, PE-related barriers include difficulty with successful execution and integration of principles into every stage of project procurement (Durdyev et al., 2019). Additionally, Kahvandi et al. (2019) present another list of IPD barriers, which is illustrated in Table 3.

| Motivation and promotion (MP) | • Lack of promotion to achieve the greenest buildings;
• Lack of government incentive policies;
• The unwillingness of the industry to varying from its traditional methods;
• Lack of sustainability goals set by the client. |
|-----------------------------|---|
| Knowledge and information (KI) | • The steep learning curve in IPD projects;
• Owner’s lack of knowledge about alternative options for higher performance;
• Lack of input provided on constructability and installation processes;
• Lack of government regulations. |
| Project Execution (PE) | • High embedded risks (i.e. financial);
• Long-term resiliency issues that put investment at risk;
• Selection of a contractor for lowest-cost bids;
• High initial investment;
• Project size. |

<table>
<thead>
<tr>
<th>contractor;</th>
<th>• Lack of expert consultants in IPD.</th>
</tr>
</thead>
</table>
(Kent and Becerik-Gerber, 2010; Hamzeh et al., 2019)
(Ghassemini and Becerik-Gerber, 2011; Hamzeh et al., 2019)
(CEC, 2015)
(Kent and Becerik-Gerber, 2010; Hamzeh et al., 2019)
(CEC, 2015)
(Kent and Becerik-Gerber, 2010; Hamzeh et al., 2019)
(CEC, 2015)
(Kent and Becerik-Gerber, 2010; Hamzeh et al., 2019)
(CEC, 2015)
(Mesa, Molenaar and Alarcón, 2016)
(Azhar, 2014)
(Mesa, Molenaar and Alarcón, 2016) |
In that study, a comprehensive list of barriers related to IPD implementation was developed through a questionnaire survey using a comprehensive IPD literature review. Stakeholders who responded to the survey include project managers, employers, consultants, and contractors in the construction field. Using exploratory factor analysis, four categories, or macro factors, of barriers were identified: contractual, environmental, managerial, and technical (Kahvandi, Saghatforoush, Zare Ravasan, et al., 2019).

METHODOLOGY

The meta-synthesis approach, as Gu and Tang (2005) explain, is a “confident hypothesis, rigorous validation” — in other words, quantitative knowledge arises
from qualitative understanding. For such an approach, the proposed hypothesis and quantitative validation focus on uniting a myriad of information, computer technology, disciplines, human experience, and knowledge. According to Glass (1976), such an approach can be defined as a statistical method aiming to perform quantitative integration and analysis of the results from all the empirical studies relevant to a specific issue, and agreeable to quantitative aggregation (Glass, 1976). The approach can be oriented to a synthesized work coming from multiple disciplines or domains and appear in strategic planning, project assessment, and evaluation, or roughly, complex problem solving. Such a method can be classified into three different categories: 1) qualitative meta-synthesis, 2) qualitative/quantitative meta-synthesis, 3) meta-synthesis from qualitative hypothesis to quantitative validation (Gu and Tang, 2005). The first category, qualitative meta-synthesis, is considered the production of assumptions or hypotheses regarding unstructured problems, such as exposed qualitative relations or structures of concerning issues. The second category, qualitative/quantitative meta-synthesis, aims to conduct quantitative analysis based on qualitative assumptions acquired from the first category, where it is used in the systems analysts and engineering field. In the third and final category, meta-synthesis from the qualitative hypothesis focus on validating the results from the previous category, where if the validation is considered positive, solutions regarding the unstructured issue are acquired (Gu and Tang, 2005).

Using the meta-synthesis method, it is possible to achieve reliable results and ensure that the quality data is aligned. In addition, meta-synthesis uses the integration of several studies to produce complete findings. The meta-synthesis method qualitatively examines the data and findings of previous studies (Noblit and Hare, 1988). On the other hand, the meta-synthesis method is used for systematic search of resources and focuses on qualitative studies. This method is tested and establishes a clear relationship between the text of the initial studies and the conclusion by developing important rules for systematic review. Thomas and Harden (2008) enriched the qualitative research literature, emphasizing the necessity to collect separate studies to provide complete and concise results (Walsh and Downe, 2005). Some of the general goals of this method include summarizing and theorizing at high levels, and developing the concept under study (Sandelowski and Barroso, 2006).

The articles collected by the meta-synthesis method in the current study have been analyzed by QSR NVivo 8.0 software. This software plays a key role in the analysis of qualitative studies and allows for easy classification of data using a coding system. Thus, the meta-synthesis method was used to review and present existing solutions to resolve obstacles to IPD implementation in construction projects. The best data were extracted from the studies and categorized according to the research needs. Noblit and Heer (1988) provide a framework
Solutions to Overcome IPD Implementation Barriers

for the meta-synthesis approach to analyze and synthesize the qualitative studies applying seven steps, as presented in Figure 1.

Figure 1. Steps of meta-synthesis method

In the next section, using this process of data analysis, the meta-synthesis approach is described.

DATA ANALYSIS

Step One: State the Research Question

In the meta-synthesis method, the first step is to develop and state the research question. The research question should be based on the researcher’s interest or on previous studies (Noblit and Hare, 1988). To develop it, the researcher should follow four basic questions:

- What research has been done?
- Who?
- When?
- How does it use a method to collect research data?

In this study, the research done includes identification and classification of IPD implementation obstacles, as well as suggestions and solutions for how to solve these problems. The “who” is the research population, which in this study are the relevant databases, scientific articles and journals, books, and masters and doctoral dissertations. Research conducted from 2007 to 2020 will be evaluated. A systematic search of library studies has been done.

Thus, the question of this research is: What are the existing solutions to resolve the obstacles to IPD implementation in different countries between 2007 and 2020,
how can these solutions be categorized and how will they improve IPD implementation?

Step Two: Search for Studies Systematically

Next, we have done a systematic search for relevant studies using reliable databases in both the English and Persian languages. Studies published between 2007 and 2020 were included. The keywords used to search for relevant sources are listed in Table 4.

<table>
<thead>
<tr>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Project Delivery</td>
</tr>
<tr>
<td>Barriers of Implementation IPD</td>
</tr>
<tr>
<td>Project Management</td>
</tr>
<tr>
<td>Solutions Problems</td>
</tr>
<tr>
<td>Solutions Barriers</td>
</tr>
<tr>
<td>Solutions Obstacles</td>
</tr>
<tr>
<td>Overcome Problems</td>
</tr>
<tr>
<td>Overcome Barriers</td>
</tr>
<tr>
<td>Overcome Obstacles</td>
</tr>
</tbody>
</table>

The results and databases used are illustrated in Table 5.

<table>
<thead>
<tr>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiley</td>
</tr>
<tr>
<td>ProQuest</td>
</tr>
<tr>
<td>Civilica</td>
</tr>
<tr>
<td>ASCE</td>
</tr>
<tr>
<td>ScienceDirect</td>
</tr>
<tr>
<td>AIA</td>
</tr>
<tr>
<td>SMPS Foundation</td>
</tr>
<tr>
<td>IEEE</td>
</tr>
<tr>
<td>Springer</td>
</tr>
<tr>
<td>Tylor&Francis</td>
</tr>
<tr>
<td>Dissertation</td>
</tr>
</tbody>
</table>

Step Three: Search and Select Appropriate Texts

In the third step of the meta-synthesis method, the selected texts are analyzed, and several criteria are used to remove studies that are not relevant to the research question (Yahyapour, Shamizanjani and Mosakhani, 2015). The criteria of this study were: publication dates between 2007 and 2020, high quality of the research methods and findings, and validity of the sources. After collecting
potential texts using the keywords outlined in Table 4, the sources were examined. Next, the titles and abstracts were reviewed to remove irrelevant sources. In the third step, the content of texts was reviewed. In the fourth step, the quality of the remaining articles was examined, using the Critical Assessment Skills Program (CASP). This program has 10 indices: 1) research objectives, 2) method logic, 3) research plan, 4) sampling method, 5) data collection, 6) reflection, 7) moral considerations, 8) data analysis and accuracy, 9) a clear statement of findings, and 10) research value (Campbell et al., 2003). Each source was given a score between 0 and 50, based on these metrics, then they were divided into groups by quality: Very good (41-50 points), good (31-40 points), medium (21-30 points), poor (11-20 points), and very poor (0-10 points) (Campbell et al., 2003; Weed, 2006). In this study, the cases with a score of less than 21 were removed from further analysis.

Thus, the criteria for accepting the studies into the meta-synthesis included:

- Research language: English or Persian
- Publication date: 2007 to 2020
- Texts and findings: qualitative, quantitative-qualitative, and case studies
- Type of studies: articles, books, theses, organizational and institutional studies, masters and doctoral dissertations

Figure 2 shows the process of searching for and selecting relevant articles.

![Figure 2. The process of searching](image)

After using the CASP procedure to include only high-quality, relevant articles, 18 sources remained (Yahyapour, Shamizanjani and Mosakhani, 2015). Thus, the
remaining cases have been used for final analysis and the response to the research question.

Step Four: Extracting Data from Texts

After culling relevant articles based on the research question, the 18 sources that remained from the previous step were analyzed. Under the final selection process, the type of data of each study was specified. In the meta-synthesis method, a limited number of articles should be obtained. Researchers using the meta-synthesis method have found that reaching 18 sources is an acceptable result (Yahyapour, Shamizanjani and Mosakhani, 2015). It is important to mention that IPD is a new approach, and it has been implemented in a limited number of projects. The data collected in this step were coded based on their type, and then categorized. Finally, after performing the fifth step, the data were analyzed and categorized and presented in Table 3 according to the assigned codes.

Step Five: Analysis and Combining the Qualitative Data

Using QSR NVivo 8.0, each text was examined thematically. A codebook was created. Some codes were determined by the researcher, and others became relevant during the coding stage using the meta-synthesis method. Each data point was categorized using descriptive coding and analysis. Then, similar codes were identified and placed into subgroups. Subgroups were categorized based on topic, with the guidance of several experts in the construction industry.

Step Six: Quality Control of Findings

Using the meta-synthesis method, quality control is considered essential for a successful project delivery. In this study, the sources were selected from valid databases and the items that did not meet the required quality and validity were removed from the analysis. Then, to ensure the quality of the studies, the steps were reviewed, and the quality of them was evaluated using the Critical Assessment Skills Program (CASP). In this step, it is possible to ensure the quality of the sources and the data mentioned in their content. The selected codes and the information classification method of the texts extracted from the databases were compatible with the codes considered by this method. Data coding and classification were reviewed several times to ensure the quality of data. In the end, the opinions of other experts were used to verify the accuracy of the final results of the meta-synthesis method.

Step Seven: Presenting Results and Findings

In this step, the research question was answered. The categorization of solutions to resolve the obstacles to IPD implementation is presented in Table 6. Moreover,
the naming and classification of this categorization have been reviewed by several experts in the construction industry.

Table 6. The solutions to resolve the obstacles to IPD implementation

<table>
<thead>
<tr>
<th>Pattern Coding</th>
<th>Descriptive Coding</th>
<th>The Solutions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical and Executive Designers and Construction Engineers</td>
<td>• Identifying the activities that lead to delays and planning, in order to eliminate them</td>
<td>(Ghassemi and Becerik-Gerber, 2011; Piroozfar et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Designing based on integration processes</td>
<td>(Durdyev et al., 2019; Hamzeh et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The design should be simplified and integrated with the construction phase</td>
<td>(Durdyev et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Increased flexibility in designs</td>
<td>(Pishdad-bozorgi, 2017; Piroozfar et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Developing a database in the design companies as the lessons learned from IPD</td>
<td>(Pishdad-bozorgi, 2017; Govender et al., 2018)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Creating a new post in the design organizations as IPD expert</td>
<td>(Piroozfar et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Presenting plans in accordance with the unique conditions of the project site</td>
<td>(Hamzeh et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Considering to use prefabricated components in the conceptual design phase</td>
<td>(Hall and Scott, 2019; Mohamed Salleh et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The designers should play an interactive role in the field of construction</td>
<td>(Roy, Malsane and Samanta, 2018; Piroozfar et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identifying the possible changes and reviewing and presenting alternative solutions</td>
<td>(Ghassemi and Becerik-Gerber, 2011; Hall and Scott, 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Specialized reviews using multidisciplinary experts, who have reviewed the design and provide feedback</td>
<td>(Durdyev et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Using computer models to evaluate design features and make essential changes and identifying possible interactions and simulating different aspects of the project over time</td>
<td>(Roy, Malsane and Samanta, 2018; Piroozfar et al., 2019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Using a design checklist to review</td>
<td>(Hamzeh et al., 2019)</td>
<td></td>
</tr>
</tbody>
</table>
key features and requirements that should be met before implementation

<table>
<thead>
<tr>
<th>The Construction and Operation and Maintenance Teams</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>The outdated construction equipment and methods should be removed from plans</td>
<td>(Pishdad-bozorgi, 2017; Piroozfar et al., 2019)</td>
</tr>
<tr>
<td>Providing the necessary suggestions to remove the restrictions and obstacles by the contractor team improves the hierarchy of site operations</td>
<td>(Durdyev et al., 2019)</td>
</tr>
<tr>
<td>The presence of construction contractors in the initial design phase with a focus on project cost and time assessment is important</td>
<td>(Pishdad-bozorgi, 2017; Ebrahimi and Dowlatabadi, 2018)</td>
</tr>
<tr>
<td>The role of the contractor in improving the IPD system involves the use of an experienced team in the field of construction</td>
<td>(Ghassemi and Becerik-Gerber, 2011; Piroozfar et al., 2019)</td>
</tr>
<tr>
<td>Providing effective suggestions to the selected contractor will lead to effective alternatives for design and construction that will result in cost-effective changes.</td>
<td>(Govender et al., 2018; Mohamed Salleh et al., 2019)</td>
</tr>
<tr>
<td>Experimental models are an important part of the suggested plan that enhance project capabilities</td>
<td>(Pishdad-bozorgi, 2017; Hall and Scott, 2019; Piroozfar et al., 2019)</td>
</tr>
<tr>
<td>Stakeholders’ acceptance and understanding of the specific conditions of the IPD system at the end of the project</td>
<td>(Roy, Malsane and Samanta, 2018; Mohamed Salleh et al., 2019)</td>
</tr>
<tr>
<td>Paying special attention to safety and insurance issues in the project implementation phase</td>
<td>(Bilbo et al., 2015; Hall and Scott, 2019)</td>
</tr>
</tbody>
</table>

- Designers and engineers should review technical specifications in order to reduce errors and conflicts before their final issuance
- Using an industrial design system for easier construction
- Presenting a constructible design and providing technical support for the construction team
- The designers should contact with the construction experts to avoid conflicts and disagreements

(Govender et al., 2018; Durdyev et al., 2019)
(Piroozfar et al., 2019; Zuber, Nawi and Nifa, 2019)
(Bilbo et al., 2015)
(Nejati, Javidruzi and Mohebifar, 2014)
Solutions to Overcome IPD Implementation Barriers

- The presented plans should be reviewed by construction experts (Mihic, Sertic and Zavrski, 2014; Piroozfar et al., 2019)
- The experience of construction phase staff can improve project design plans (Durdyev et al., 2019)
- They should consult with the contractors about determining materials, during the planning phase (Mihic, Sertic and Zavrski, 2014)

Organization Rules and Training

- Learning from users’ feedback (Hall and Scott, 2019)
- Developing and using maintenance checklists and standards and further training of personnel to deal with cultural problems (Nejati, Javidruzi and Mohebifar, 2014)
- Standardizing materials, construction details, construction systems, etc., through repetitive processes reduces some costs (Govender et al., 2018)
- Support designers to provide prefabricated designs and optimal plans (Nejati, Javidruzi and Mohebifar, 2014; Piroozfar et al., 2019)
- Taking advantage from design software and applications and project control and teaching them to the staff (Ghassemi and Becerik-Gerber, 2011; Paik et al., 2017)
- Holding training meetings and seminars, by presenting a professional degree to improve IPD knowledge (Paik et al., 2017; Piroozfar et al., 2019)
- Integrating and sharing knowledge of design, construction, and maintenance to develop technical standards and prevent future problems (Zuber, Nawi and Nifa, 2019)
- Developing standards in designs according to the uniqueness of projects and developing practical standards according to the experiences of the owners of the construction industry (Hall and Scott, 2019)
- Modifying employment methods by emphasizing having good communication and teamwork skills (Govender et al., 2018; Durdyev et al., 2019)
- Effective management of construction resources such as improving responsibilities and standards of labors and trainings (Roy, Malsane and Samanta, 2018)
- Paying attention to the improvement of the knowledge of construction and maintenance (Nejati, Javidruzi and Mohebifar, 2014)
| Finance and Contracts | • Taking advantage from the experiences of the construction sector to perform the designs in contracts | (Ghassemi and Becerik-Gerber, 2011)
(Mohamed Salleh et al., 2019) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Preparing the contract documents for the presence of maintenance contractors in the early phases of design</td>
<td>(Ebrahim and Dowlatabadi, 2018)</td>
<td></td>
</tr>
</tbody>
</table>
| • Developing a database of contractors with IPD implementation experience | (Azhar, Kang and Ahmad, 2014)
(Sommer, Dukovska-Popovska and Steger-Jensen, 2014; Piroozfar et al., 2019) |
| • Considering more terms in contracts regarding site access and use, security and facilities | (Paik et al., 2017) |
| • The life cycle cost model selects the best implementation system | (Ghassemi and Becerik-Gerber, 2011; Zuber, Nawi and Nifa, 2019)
(Ahmad, Azhar and Chowdhury, 2019; Durdyev et al., 2019) |
| • The use of investment and contractual capabilities of the private finance initiative (PFI) | (Hall and Scott, 2019) |
| • Presenting and receiving investment plans that improve risk-taking. | (Azhar, Kang and Ahmad, 2014) |
| • Providing field visits by designers of running projects for control and monitoring | (Ahmad, Azhar and Chowdhury, 2019) |
| • The use of investment and contractual capabilities as public private partnership (PPP) | (Ahmad, Azhar and Chowdhury, 2019) |
| • Using the life cycle cost at different stages of the decision-making process, because it calculates future costs, disruptions in the building operations, taxes, and energy, and predicts the life of building | |
Solutions to Overcome IPD Implementation Barriers

<table>
<thead>
<tr>
<th>The employer, Project Manager, and Planning Team</th>
<th>Selecting a design sub-consultant and a construction consultant who will specifically assist in the IPD implementation and project planning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investigating the obstacles that may interrupt the construction phase during the planning phase</td>
</tr>
<tr>
<td></td>
<td>Using Facility Management (FM) in the early phases of the project</td>
</tr>
<tr>
<td></td>
<td>Communicating with design and construction teams to select the appropriate options in the project life cycle</td>
</tr>
<tr>
<td></td>
<td>Using methods and technologies that minimize the risks of climate change</td>
</tr>
<tr>
<td></td>
<td>Using the contractor’s experience in identifying materials</td>
</tr>
<tr>
<td></td>
<td>Focusing on project optimization rather than design and planning optimization</td>
</tr>
<tr>
<td></td>
<td>Welcome to creativity and new ideas for IPD promotion</td>
</tr>
<tr>
<td></td>
<td>Accurate definition of project objectives to make detailed decisions in the project</td>
</tr>
<tr>
<td></td>
<td>The full support of the employer for the IPD system improves the quality of the group working</td>
</tr>
<tr>
<td></td>
<td>The employer’s support for new design and construction methods</td>
</tr>
<tr>
<td></td>
<td>The use of IPD as a basis for competition in construction</td>
</tr>
</tbody>
</table>

- Considering a detailed schedule in contracts for all phases of the project life cycle
- Providing formal commitment to use the IPD system and then convincing owners and contractors to take advantage of it.

(Azhar, Kang and Ahmad, 2014; Nejati, Javidruzi and Mohebifar, 2014)
(Sommer, Dukovska-Popovska and Steger-Jensen, 2014)
(Ahmad, Azhar and Chowdhury, 2019)
(Paik et al., 2017; Hall and Scott, 2019)
(Pishdad-bozorgi, 2017)
(Piroozfar et al., 2019)
(Paik et al., 2017)
(Durdyev et al., 2019)
(Ebrahimi and Dowlatabadi, 2018)
(Hall and Scott, 2019; Piroozfar et al., 2019)
(Nejati, Javidruzi and Mohebifar, 2014; Ebrahimi and Dowlatabadi, 2018)
(Piroozfar et al., 2019; Zuber, Nawi and Nifa, 2019)
(Nejati, Javidruzi and Mohebifar, 2014; Durdyev et al., 2019)
(Hamzeh et al., 2019; Zuber, Nawi)
companies
• Creating a centralized system of powerful support program to exchange design, technical, management, and monitoring information
• Holding periodic brainstorming sessions at all stages
• Regular reporting of IPD system benefits
• Developing this attitude that IPD should be considered as an investment opportunity that reduces risks
• Using external experts to take advantage of their experiences about IPD implementation in person and virtually
• Focusing on teamwork to meet the goals of the group rather than personal goals
• Using Building Information Modeling (BIM)
• The use of experienced contractors regarding maintenance to attend in the initial phases of the project

Using the data presented in Table 6, Figure 3 shows a framework for descriptive and pattern analysis of solutions to resolve the obstacles to IPD implementation.

Figure 3. The framework of solutions to resolve the obstacles to IPD implementation
In recent years, several efforts have been made to resolve IPD obstacles. Given the current complexities, industry owners are trying to resolve conflicts to improve project quality. Due to advances in the methodology, IPD has been successfully implemented in numerous projects, and as expected, it has had the ability to resolve many of the problems present in traditional systems (Kahvandi, Saghatforoush, Mahoud, et al., 2019). In this study, the authors attempt to examine and classify experiences and implementation solutions in a comprehensive and purposeful way. In the next section, we will discuss the results of this research.

DISCUSSION

Due to differences between countries’ project conditions, obstacles in implementation of IPD have affected factors such as contracts and tenders, in both the private and public sectors (Collins and Parrish, 2014). In this sense, the current study sought to investigate and provide solutions to resolve such obstacles to IPD implementation. The solutions provided in this study are categorized into two major sections and five sub-sections. After reviewing the studies selected by the meta-synthesis method, different solutions were analyzed. In technical and executive areas, all stakeholders—including designers, construction engineers, construction teams, and operation and maintenance teams—each have the same responsibility to improve IPD and meet the project goals. For example, design based on integration processes should be done exactly according to IPD criteria. Designers should act in coordination with construction engineers, causing a significant cost reduction.

For example, in the Denver Hospital project in Colorado in the United States, worth $160 million USD and scheduled to be completed within 24 months, the IPD method was successfully implemented. Because of this success, costs decreased 26% (Mesa, Molenaar and Alarcón, 2016). To improve IPD knowledge and achieve results such as this, solutions such as training sessions and seminars could be considered as options in the management of a project. This has already been implemented, for example, during construction of the Cardinal Glennon Children’s Hospital project, in Missouri, in the United States. Stakeholders participated in training courses, and they used an integrated contract to solve inflexibility problems present in traditional contracts (AIA California Council, 2012). New methods in design and new construction technologies also allowed for the project’s success. One additional project that could be used as an example is the San Francisco Medical Center project, also in the United States. For this project, the employer's consent to implement IPD saved roughly $1 million USD in electrical equipment and $5 million USD in mechanical equipment. Additionally, with the initial maintenance contractor
consultation, more appropriate and updated equipment was provided for the project (Kahvandi, Saghatforoush, Zare Ravasan, et al., 2019). Finally, in the Sutter Health Fairfield Medical Center project in California, the initial budget was estimated to be $22 million, but it was able to be reduced to $19 million USD due to IPD method application (AIA California Council, 2012).

When it comes to protection of stakeholders in IPD projects, special insurance rules and provision of special credit to the contractors need to be put in place for the project’s success. However, IPD insurance contracts are still in development. The Autodesk One Market project, a commercial building in the United States, was completed in 9 months with a budget of about $10 million USD. The project team used conventional insurance contracts with the agreement that claims would not be made amongst stakeholders, except in cases of fraud and misconduct, in order to share the risks and rewards (Ghassemi and Becerik-Gerber, 2011). In this regard, the employer’s full support of IPD can improve teamwork quality, as defined by mutual cooperation at the beginning of the project. Terminal 5 of London’s Heathrow Airport is another complex project that used IPD principles and was completed with a £4.3 billion budget (Basu, Little and Millard, 2009). The success of this project depended on three areas: the procurement system, teamwork culture, and mutual trust, such that all stakeholders’ main goals were able to be met (Caldwell, Roehrich and Davies, 2009; Brady and Davies, 2010).

Examples of IPD implementation in developing countries include a Wastewater Treatment Plant project in Vietnam, which was built to improve urban infrastructure for drainage and sewage systems. IPD is a new project implementation system in Vietnam, and this project’s success has inspired the possibility of further IPD application in the construction industry, particularly in the early involvement of key participants, risk and reward management, and contracts. The Iran Mall project was the first project in Iran to use both BIM technology and IPD principles, and it is one of the largest commercial complexes in the Middle East. Its area is about 1,700,000 square meters, and it is located west of Tehran. This complex includes a commercial section, two office towers, parking, two five-star hotels, and catering halls. In this project, various contractors were employed with different types of contracts, some of which followed IPD methodology. However, due to existing challenges, IPD was not completely implemented (Kahvandi et al., 2018).

It should be noted that the presented solutions do not resolve all obstacles, but the many benefits of IPD will allow construction industry owners in different countries to find solutions to resolve issues that may arise. Overall, IPD implementation aims to optimize the project’s final cost, time, and quality.
CONCLUSIONS

Selecting appropriate project delivery methods could enable a construction project's success, and the IPD approach can support stakeholders in this regard. This study has collected research published between 2007 and 2020 to carefully examine solutions to resolve IPD obstacles, in an attempt to add an organized collection of IPD solutions to existing knowledge. The solutions presented in this study are only some of the first steps to improve the use of IPD in the future.

Using macro categorization and pattern coding, the solutions found in the analysis were coded into four categories: organizational, managerial, technical and executive, which cover most issues related to the construction field. In addition, the current study sought to provide a more comprehensive framework for solutions to resolve IPD obstacles. These solutions can also facilitate the presence of maintenance contractors in the early design and implementation phases of projects, which is an important step in improving the quality of complex projects. On the other hand, the findings illustrate that IPD can facilitate BIM absorption.

Limitations in this study include the resources used, the low use of IPD contracts, and the scarcity of referable resources. For future research in developing countries, the study opens new horizons for promoting the adoption of IPD in the Architecture, Engineering, and Construction (AEC) industry. The study's primary added value to the existing body of knowledge is to go beyond the conceptual stage of existing studies by initiating real-life applications of IPD through exploring and classifying case projects.

For further study, we suggest exploring how the construction industry can incorporate the servitization strategy to integrate construction and improve the relationship between AEC firms and the client specialized in the project during development.

REFERENCES

Available at: http://usir.salford.ac.uk/id/eprint/60884.

Solutions to Overcome IPD Implementation Barriers

