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Abstract: The reactive distillation of methyl tert-butyl ether (MTBE) involves strong interactions between variables and is a highly nonlinear process. Here, a nonlinear model predictive control (MPC) was proposed to tackle the nonlinearity and the interaction involved in controlling the tray temperature in MTBE reactive distillation. To improve the performance of the MPC, an advanced nonlinear block-oriented model known as the neural Wiener model was employed. The control study was successfully simulated using Simulink (Matlab), which is integrated with the Aspen dynamic model. Set-point tracking, disturbance rejection and robustness tests were conducted to evaluate the neural-Wiener-based MPC (NWMPC) performance. The results achieved show that the NWMPC is able to maintain the product purity at its set-point of 99%, with isobutene conversion exceeding 99.98%. NWMPC is also able to reject disturbances, as shown in disturbance rejection study performed by changing the feed flowrate to 30% of the nominal value. This controller is also very robust and thus able to control the MTBE reactive distillation, even when the column efficiency was reduced to 80%.
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1.      INTRODUCTION

The main purpose of controlling the reactive distillation (RD) of methyl tert-butyl ether (MTBE) is to maintain the MTBE purity within a desired range. The desired MTBE purity can be obtained by controlling the tray temperature because the MTBE purity is correlated with tray temperature.1 Temperature control is more economical than other approaches because the composition analyser can be omitted. Due to the highly variable interactions in RD and their nonlinearity, in this work, the nonlinear MPC is proposed to control this system. The neural Wiener (NW) model, a powerful block-oriented model capable of reducing the computational time, has been selected to be embedded in the MPC.2–5 The proposed NW model consists of a state space as a linear dynamic block, followed by a neural network as a nonlinear static block. An MPC using the NW model and sequential quadratic programming (SQP) optimiser, called a  neural-Wiener-based MPC (NWMPC), has been applied to control the MTBE RD.

2.      DEVELOPMENT OF THE MTBE REACTIVE DISTILLATION PROCESS MODEL

The most promising technique for producing MTBE uses methanol and isobutene, where the liquid-phase reaction is catalysed by an ion exchange resin (heterogeneous reaction). The reaction scheme is:
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The butene feed for MTBE synthesis consists of approximately 40% isobutene and 60% n-butene, which the latter of which is inert. Methanol is usually fed in excess to improve the conversion of isobutene into MTBE. MTBE forms azeotropes with methanol and isobutene, making it difficult to separate MTBE from its impurities. However, in reactive distillation, the azeotropes are reacted in a reaction section.6,7 The specifications for the MTBE RD considered here can be found in Sudibyo et al.8
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Figure 1:      MTBE reactive distillation column.



3.      DEVELOPMENT OF THE NEURAL WIENER MODEL
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Figure 2:      Neural Wiener model configuration.



The NW model consists of linear and nonlinear blocks, as shown in Figure 2. The linear block used in this work is a state space model. Using the Matlab identification toolbox, the state space model for multivariable MTBE reactive distillation can be identified as shown below:
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where
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D, u and x are zero matrices of size (2 × 2), (4 × 2) and (4 × 1), respectively, and G is a discrete-time model.

The neural Wiener nonlinear block used in this work is a neural network model used to represent the inverse of the nonlinear block in the N-W model. In this part, the MTBE reactive distillation was modelled using a multiple-input multiple-output (MIMO) feed-forward neural network model with 15 hidden nodes and one hidden layer. The output y(k) of the neural network is described as:
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where w0 is the bias, wi,j is the weight of the first layer, wi is the weight of the second layer, φ is a nonlinear transfer function (e.g., hyperbolic tangent sigmoid transfer function or tansig) and K is the number of hidden nodes.5,9 The output of the N-W model can be defined by substituting Equation (3) into (4), as shown below:
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4.      DEVELOPMENT OF THE NWMPC

The optimal control configurations with the most suitable control variable, manipulated variable and disturbances have been identified.4,5 The empirical model developed and the optimisers proposed have been embedded in the NWMPC as shown in Figure 3. The accuracy of the controller is the main consideration in the design of the NWMPC.
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Figure 3:      General structure of the NWMPC.



The NWMPC objective function for the MIMO case consists of the quadratic error between each controlled variable and its set-point and the quadratic change of each manipulated variable. The MPC objective function for the 2 × 2 system is defined as follows:
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where yf is the predicted future output, ysp is the set-point, Q is the error penalty, R is the input change penalty, Δμf is the future input change and k is the current sampling time.

5.      CONTROL STUDY

The controller performances have been evaluated based on the results obtained from set-point tracking, disturbance rejection and robustness tests. The performance criteria used are the integral absolute error (IAE), integral squared error (ISE) and integral time absolute error (ITAE).

5.1          Set-point Tracking Test

In this test, the set-point 1 values are 0, 5.4966, 4 and 5.4966, while the set point 2 values are 0, 0.424, 0.2708 and 0.424. These values were changed every 2 h to change the MTBE purity from 95% (low quality) to 99% (high quality) and then 97% (medium quality). The resulting CV profiles are shown in Figure 4. As observed in the figure, the CV1 profile can be tracked very well, whereas the CV2 profile slightly overshoots at the beginning of the step changes (t = 2 2.3). The CV2 profile also shows small offset values, but the error calculated is still very small (ITAE = 1.55%).
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Figure 4:      Set-point test profile of CV1 and CV2 using NWMPC.



5.2          Disturbance Rejection Test
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Figure 5:      Disturbance rejection test profile of CV1 and CV2.



The disturbance rejection study is performed by changing the feed flowrate by 30% of the nominal value. The duration of the change is 0.2 h (from 3 h to 3.2 h). The resulting CV1 shows that the NWMPC is able to reject the disturbance (within 0.5 h) and return the CV1 to its original set-point, as shown in Figure 5. On the other hand, for CV2, the NWMPC takes longer to reject the disturbance imposed. It can also be observed in Figure 5 that the deviation for the CV2 profile is quite large, which is due to the reaction and separation process in this tray.1

5.3          Robustness Test

In this test, the column efficiency was changed to 80% without changing the NMPC parameter. Under the new initial conditions resulting from this efficiency change, at the steady-state, the MTBE purity is 95.24%, while the temperatures of tray numbers 3 and 8 are 93.92°C and 126.96°C, respectively. In this test, the set-point steps were 0, 7, 4 and 7 for CV1 and 0, 0.75, 0.39 and 0.75 for CV2, which were varied with a switching time of 2 h. For the T3 (CV1) profiles, the NWMPC controller managed to force the CV1 to follow the set-point despite the reduced tray efficiency of the column, as shown in Figure 8. Meanwhile, the CV2 profile shows an overshoot at the beginning of the set-point change, eventually converging to the steady-state. The performance criteria (error information) for CV1 and CV2 are tabulated in Table 1. The table shows that, overall, the NWMPC managed to control the tray temperature of MTBE RD very well.
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Figure 6:      Robustness test profile of CV1 and CV2.




Table 1:      Error calculation for the set-point change, disturbance rejection and robustness tests.



	
	NWMPC




	
Set-point change test

	
Disturbance rejection test

	
Robustness test




	Y1

	Y2

	Y1

	Y2

	Y1

	Y2




	IAE

	0.5009

	0.4958

	0.4511

	0.1072

	0.6529

	0.1029




	ISE

	0.6740

	0.4872

	0.2601

	0.1986

	0.3979

	0.0570




	ITAE

	1.5627

	1.5479

	0.7502

	0.2684

	2.3473

	0.4184





6.      CONCLUSION

An NWMPC using an SQP optimiser has been successfully applied to control the tray temperatures in MTBE reactive distillation. The NWMPC was then evaluated based on set-point tracking, disturbance rejection and robustness tests. The results showed that the NWMPC is able to control the CV1 and CV2 effectively, with small error values.
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Abstract: The aim of this study was to optimise the experimental conditions for the synthesis of silica nanoparticles. In achieving this, the amount of butanol, the amount of surfactant, the amount of silica precursor, the synthesis temperature and the agitation speed were optimised by applying the Taguchi orthogonal arrays method. The optimal synthesis conditions for silica nanoparticle production were a temperature of 50°C, 6 ml butanol, 7 ml Tween 80, 3 ml trimethoxyvinylsilane (TMVS), and an agitation speed of 320 rpm. The nanoparticle size was characterised to optimise the synthesis conditions and determined to be smaller than 100 nm using a Malvern Zetasizer Nano ZS and a transmission electron microscope (TEM).
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1.      INTRODUCTION

Over the past decades, the drug delivery system (DDS) concept has made great progress in the treatment of a variety of diseases and in cancer therapy. Some of the most important aspects of DDS include high stability in biological media, high carrier capacity, potential use for both hydrophilic and hydrophobic molecules, tuneable size for targeted delivery and controllable release of molecules. Nanoparticles for DDS are typically made of biocompatible and biodegradable materials such as polymers and ceramics. Ceramic nanoparticles such as those composed of silica have attracted much attention in recent years due to their unique properties, which include biocompatibility, chemical and mechanical stability, large specific surface area, and porous structure.1–4

The properties of silica nanoparticles are affected by various parameters such as the reaction temperature, butanol concentration, surfactant type, silica precursor and agitation speed used during synthesis.5,6 The interaction between these variables is complex; therefore, the analysis of this system to optimise the processing conditions is time and labour intensive. The use of Taguchi method makes it possible to develop an acceptable formulation using minimum raw materials and save time. The primary goal of Taguchi method is to analyse all variables simultaneously using a few experiments. Software that implements this method can be successfully utilised to optimise various formulations within a given set of independent variables.7–10

In this study, the micelle entrapment approach was used to synthesise silica nanoparticles as nano-carriers for DDS, and the essential parameters were considered. The objectives of this work were to optimise the experimental conditions for the preparation of silica nanoparticles and to select the significant parameters that most strongly affect the nanoparticle size by the Taguchi design method. In addition, the nanoparticle size was evaluated by dynamic light scattering (DLS), and transmission electron microscopy (TEM) was used to characterise the size and shape of the silica nanoparticles for DDS.

2.      EXPERIMENTAL

2.1          Materials

The materials required for the synthesis of silica nanoparticles were as follows. Tween 80-viscous liquid, trimethoxyvinylsilane (TMVS 98% pure) and rifampicin were obtained from Sigma-Aldrich Co. (Missouri, U.S.). 2-Butanol (99% pure) and a 10 M ammonium hydroxide solution (31.5% NH3 pure) were obtained from Fischer Scientific (Fairlawn, New Jersey, U.S.). All chemicals were of analytical grade and used without any purification. De-ionised water from a Millipore filtration system (with a conductivity of 18.2 MΩ cm) was used in this study.

2.2          Sample Preparation

Silica nanoparticles were prepared via the micelle formation approach. First, 5.5 ml Tween 80 was dissolved in 200 ml of de-ionised water. The mixture was stirred for 15 min before 200 μl of prepared NH3 (1 ml NH3 was dissolved in 1 ml de-ionised water) was added to ensure the pH was maintained within the range of 9–11. Then, butanol was poured into the mixture and continuously stirred for 5 min. The mixture was then transferred into a preheated reactor at a set temperature and continuously stirred at 320 rpm for 1 h. A prepared rifampicin drug solution (839 mg of rifampicin dissolved in 1.5 ml methanol) was then added to the abovementioned mixture and continuously stirred under the same conditions. After an hour, TMVS was added as a silica precursor. The mixture was continuously stirred overnight at 320 rpm and maintained at a set temperature, which yielded a total volume of 250 ml. The produced silica was then subjected to dialysis for 5 days to remove the surfactant. Finally, the sample was collected in a bottle and stored in a refrigerator until further testing.

2.3          Characterisation

The synthesised silica nanoparticles were characterised using different techniques. The particle size was characterised by dynamic light scattering (Zetasizer Nano ZS, Malvern Instrument, U.K.), whereas images of the samples were captured using transmission electron microscopy (TEM; Philips, model CM12, Eindhoven, Netherlands). To prepare samples for TEM observation, a drop of silica nanoparticles was placed on a copper grid coated with carbon and air-dried for 3 min at room temperature. Then, the grid was examined by TEM without being stained.

2.4          Experimental Design

A specialised experimental design was used to develop an optimisation process for silica nanoparticle preparation. In this study, the Taguchi orthogonal arrays (OA) method was used to identify the optimal conditions and to select the synthesis parameters that have the most significant effect on the size of silica nanoparticles. To minimise the number of experiments, Taguchi OA was implemented using Design Expert statistical software version 8.0.6.1 (Stat-Ease, Inc., Minneapolis, U.S.). Taguchi OA was applied by choosing 5 parameters that could affect the size of silica nanoparticles. The levels of each parameter are listed in Table 1. The orthogonal arrays of the L16 type were used, indicating that 16 experiments were required to study all of the parameters involved, with the target output parameter being the particle size (particle diameter in nanometres), as shown in Table 2.


Table 1:      Factors and levels employed in Taguchi method.



	Code

	Factor
	Level




	1

	2

	3

	4




	A

	Temperature (°C)
	40

	50

	60

	70




	B

	Amount of 2-butanol (ml)
	4

	6

	8

	10




	C

	Amount of Tween 80 (ml)
	3

	5

	7

	9




	D

	Amount of TMVS (ml)
	1

	2

	3

	4




	E

	Agitation speed (rpm)
	220

	320

	420

	520






Table 2:      Combination of variables of the Taguchi orthogonal experimental design (16 runs [4 levels and 5 factors]).
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3.      RESULTS AND DISCUSSION

3.1          Analysis of Experimental Design

An OA design was used to identify the optimal conditions and to select the parameters that have the greatest effect on the size of silica nanoparticles. 16 experiments were performed to estimate the best conditions for the synthesis of the nanoparticles. The structure of the OA design and the results of particle size measurements are shown in Table 2, and the smallest nanoparticle size (18.24 nm) is presented in run number 1. The particle size for each sample of silica nanoparticles was determined by DLS. Experiments were performed for each run number in Table 2.

In the Taguchi method, the signal/noise (S/N) ratio is a measure of signal quality and deviation from the desired value. The term “signal” represents the desired value (mean), whereas “noise” represents an undesired value (standard deviation from mean) for output characteristics.11 The S/N ratio varies with the type of characteristic considered. A “smaller-the-better” type of S/N ratio is used in analyses aimed at achieving high accuracy. This type of S/N ratio is defined as follows:

S/N ratio [dB] = –10 log [y12 + y22 + y32 + …. /n]

Table 2 shows the S/N ratio for each particle size calculated by the above-described equation, and the results of particle size measurements performed by DLS. The mean S/N ratio for each level of the parameters and the response in terms of the S/N ratio is shown in Table 3. The highest value of A indicates that temperature has the most significant effect on the size of silica nanoparticles. The amount of TMVS has the second most significant effect on nanoparticle size, and the agitation speed has the weakest effect.


Table 3:      S/N response table for silica nanoparticle size.



	Factors

	Mean S/N ratio (dB) for particle size

	Contribution (%)




	Level 1

	Level 2

	Level 3

	Level 4




	A

	–32.72

	–35.19

	–38.19

	–39.80

	28.92




	B

	–35.03

	–35.94

	–36.23

	–38.70

	14.99




	C

	–33.91

	–35.52

	–37.21

	–39.27

	21.85




	D

	–33.42

	–35.80

	–37.22

	–39.46

	24.66




	E

	–36.04

	–35.81

	–38.16

	–35.89

	9.58





Table 4 shows the main effects of the various factors on the size of silica nanoparticles. The Model F-value of 4.64 implies the model is significant. There is only a 2.02% chance that such a large Model F-value could occur due to noise. Values of “Prob > F” less than 0.0500 indicate that the model terms are significant. Therefore, based on the results presented in Table 3 and Table 4, A and C, which represent temperature and the amount of TMVS, are significant model terms, and the R-squared value is equal to 0.7558.


Table 4:      ANOVA table of silica nanoparticle size.



	Sources
	Degrees of freedom

	Sum of squares

	F-value

	p-value prob > F




	Model
	6

	0.72

	4.64

	0.0202




	A – Temperature
	3

	0.35

	4.52

	0.0339




	D – TMVS
	3

	0.37

	4.76

	0.0296




	Residual
	9

	0.23

	–

	–




	Cor total
	15

	0.95

	–

	–





The response graphs corresponding to the aforementioned factors are presented in Figure 1. As shown in the figure, the optimal conditions for the synthesis of silica nanoparticles are a temperature at level 2, an amount of 2-butanol at level 2, an amount of Tween 80 at level 3, an amount of TMVS at level 3, and an agitation speed at level 2.
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Figure 1:      Response graph of S/N ratio for smaller-the-better analysis of nanoparticle size.



The following were determined to be the best parameters for the production of silica nanoparticles: temperature = 50°C; amount of 2-butanol = 6 ml; amount of Tween 80 = 7 ml; amount of TMVS = 3 ml; and agitation speed = 320 rpm. Under these conditions, the software program estimated the nanoparticle size to be 32.07 nm, whereas the nanoparticle size achieved by experiment was 28.91 nm, as shown in Figure 2. Experiments were conducted to validate the optimal parameters obtained by the Taguchi method. Good agreement was observed between the predicted particle size and the experimental particle size. Consequently, the size of synthesised silica nanoparticles can be improved through the Taguchi method.

3.2          Characteristics and Determination of Silica Nanoparticle Size Distribution

TEM micrographs and the particle size distribution of the silica nanoparticles obtained under optimal conditions are shown in Figure 2. Silica nanoparticles with a mean size of 28.91 nm were prepared, as illustrated in Figure 2 (a). It was observed that the size distribution of the prepared silica nanoparticles was unimodal and uniform. The average diameter of the silica particles, which were nearly spherical, was determined based on the diameter of approximately 100 particles using TEM micrographs of a sample, as illustrated in Figure 2 (b).
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Figure 2:      TEM image (a) and histogram of particle size distribution (b) of silica nanoparticles obtained under optimal conditions.



4.      CONCLUSION

This study demonstrated that the size of silica nanoparticles entrapped with rifampicin synthesised by the micelle entrapment approach can be manipulated by varying the process conditions. Using the Taguchi method, parameter A (temperature) was determined to have the most significant effect in tuning the size of silica nanoparticles. Based on the S/N ratio and ANOVA, the optimum conditions for preparing silica nanoparticles are a temperature of 50°C, 6 ml 2-butanol, 7 ml Tween 80, 3 ml trimethoxyvinylsilane (TMVS), and an agitation speed of 320 rpm. Under these conditions, silica nanoparticles measuring 28.91 nm were produced. This study shows that the Taguchi method is one of the most suitable methods for optimising experimental conditions to achieve the minimum size of silica nanoparticles for drug delivery systems.
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Abstract: There is an increasing interest towards the use of vegetable oils (palm oil in Malaysia) in the much sought eco-friendly biodiesel production. This study focuses on the biodiesel production using supercritical methanol. The main highlights of this process include the un-necessity of catalyst and the insensitivity to the presence of free fatty acids and water in the feedstock. In this study, steady state simulation and sensitivity analysis of biodiesel production using supercritical methanol are performed. In the subsequent part, cost analysis is done using the Aspen Process Economic Analyzer. The feed oil is found to be the main contributor to the total manufacturing cost.

Keywords: Steady state simulator, biodiesel production, FAME, Aspen Process Economic Analyzer, supercritical methanol

1.      INTRODUCTION

The demand for energy is increasing exponentially, and because conventional energy resources are limited, researchers are always seeking alternative energy sources.1 Biodiesel is a fuel derived from vegetable oil or animal fat, which consists of long-chain alkyl esters. The typical process for biodiesel production includes trans-esterification, which involves the use of short chains of aliphatic alcohol such as methanol or ethanol.2,3 Biodiesel offers many advantages over petro-diesel such as renewability, sustainability and biodegradability. Biodiesel also possesses a higher flash point than petroleum diesel, which makes it less volatile and more convenient for transportation and handling. Moreover, the dramatic increase in the price of petroleum due to finite sources of fossil fuels as well as environmental concerns have led researchers to search for alternative energy sources, and in particular, sources of biodiesel.4 Additionally, biodiesel has a more favourable combustion profile than petro-diesel due to the lower emission of hazardous gases, such as carbon dioxide and carbon monoxide.5

A number of studies have focused on the production of biodiesel via trans-esterification of vegetable oil with alcohol under different operating conditions.2,3 This reaction can be performed in the presence of acidic or basic catalysts. However, there are drawbacks of using acidic/basic catalysts. First, alkali-catalysed processes are very sensitive to the presence of free fatty acids (FFAs) and water. Second, acid-catalysed processes require a long reaction time. Additionally, these processes require additional steps to separate the products and the catalyst, which ultimately increases both capital and operating cost. To overcome these challenges, here the authors propose the production of biodiesel from vegetable oils via non-catalytic trans-esterification with methanol under supercritical conditions.6,7 Supercritical methanol forms a single phase in methanol/oil mixtures. Additionally, the reaction time is comparatively shorter. Therefore, the reaction occurs without a catalyst, and the separation of the products is much easier and more environmentally friendly. However, the reaction requires a temperature of 350°C–400°C and pressures of up to 45–54 MPa. These extreme conditions lead to increased energy consumption.

A steady state simulator is required to investigate the feasibility of this process and to study the effect of various process parameters. Additionally, techno-economic analysis is important to determine the overall capital and production cost of the plant. Therefore, this study aims at the development of the process and its validation including a sensitivity analysis and cost analysis. The results are validated with data reported in the literature, followed by a sensitivity analysis, where the effect of the number of tubes and tube diameter is determined. Subsequently, a cost analysis is performed using the Aspen Process Economic Analyzer. The most dominant factors contributing to the total cost of production are determined.

2.      SUPERCRITICAL METHANOL PROCESS FOR BIODIESEL PRODUCTION

One of the main processes in biodiesel production is trans-esterification, where a triglyceride is converted to an alkyl-ester by reacting with light alcohols. Methanol is generally used due to its low cost. The chemical reaction involved in trans-esterification can be represented as shown below:
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Figure 1:      Chemical reaction for the trans-esterification of a triglyceride with methanol to form a mixture of fatty esters and glycerine (source: U.S. Department of Energy).



Figure 1 shows that a triglyceride contains 3 separate ester functional groups and can react with 3 moles of methanol to form fatty acid methyl esters (FAME), i.e., biodiesel and glycerol. A catalyst is not necessary for this reaction to occur when using supercritical methanol. Freedman et al.8 discussed the results of a parametric study of trans-esterification reaction variables, such as temperature, molar ratio of alcohol to oil, type of catalyst and the degree of oil refinement. Those authors presented the relationship between the rate of the reaction and the alcohol-to-oil ratio. Additionally, Freedman et al.8 compared two types of feedstock, namely, crude vegetable oil and refined vegetable oil. Recently, the trans-esterification of triglycerides with supercritical methanol to produce biodiesel is being given much attention.

Saka dan Kusdiana4 reported that the supercritical methanol process requires a very high methanol to oil ratio (42:1) and a very high operating temperature and pressure of 350°C and 43 MPa, respectively. They used the rapeseed oil as feedstock to study biodiesel production using the supercritical alcohol method. Morais et al.9 investigated the environmental impact-based biodiesel production processes, namely, conventional alkali-catalysed processes, acid-catalysed processes and the supercritical methanol process. Life cycle assessment (LCA) was used to determine the potential environmental impact of each process. This study showed that the supercritical process has a higher environmental impact because it requires a higher amount of methanol to undergo the supercritical trans-esterification reaction.

Cao et al.10 found a way to decrease the operating temperature and pressure of the supercritical methanol process by introducing propane as the co-solvent in the reaction. Propane decreases the critical point of methanol, which promotes the supercritical condition at a lower temperature. The optimum conditions reported are 280°C, 12.8 MPa, an alcohol to oil molar ratio of 24:1 and a propane to oil molar ratio of 0.05:1. They reported that 98% of oils were converted to biodiesel within a duration of 10 min. Kasteren and Nisworo11 further accessed the applicability of the supercritical process through an economic analysis and reported that the process can compete with the conventional alkali- and acid-catalysed processes. Demirbas6,7 reviewed the production of biodiesels and suggested that by increasing the reaction temperature, especially to supercritical conditions, the yield of the FAME could increase.

Supercritical fluid has received much attention due to its unique properties.4 Under these conditions, the molecules in the substance have a high kinetic energy like a gas and have a high density like a liquid. Therefore, the chemical reactivity of a chemical substance can be enhanced, as the dielectric constant of the supercritical fluid is lower than that of the liquid.4 Methanol in a supercritical state can dissolve well in many types of non-polar organic substances, such as oils or fats, which subsequently supports the use and implementation of supercritical methanol in biodiesel production. On the other hand, the ionic products of supercritical methanol are increased by increasing the pressure.12

3.      SIMULATION OF THE PROCESS

The plant capacity is considered to be 10,000 tons of biodiesel per annum. A combination of UNIQUAC and the Redlich-Kwong (RK-ASPEN) thermodynamic model is used as the UNIQUAC model cannot be used at high pressure and high temperature.13 The Redlich-Kwong EOS model is also suitable when highly polar components are present.2,3 The distillation columns and other separation processes are operated at lower pressure, but the reactors are operated at high pressure. Some components, which are not directly available in the Aspen Plus, are represented by other similar components chosen from the Aspen database. For instance, triolein (C57H104O6) was selected to represent the palm oil feedstock and oleic acid methyl ester (C19H36O2). This assumption is reasonable, as oleic acid is the major component in rapeseed oil, palm oil and peanut oil.2,11 A vacuum is applied in the distillation columns for methanol recovery and product purification in order to avoid the product. Figure 2 presents a schematic of the process of biodiesel production using supercritical methanol modified from Sandra et al.13


Table 1:      Design and operating parameters.



	Stream/Block in Figure 1
	Parameters (unit)
	Value




	Stream 101
	Fresh methanol (kg h–1)
	1948




	Stream 102
	Waste palm oil feed (kg h–1)
	1282




	Heater F-101
	Temperature and Pressure in (K and bars, respectively)
	573.15 and 20




	Distillation Column T-301
	Reflux ratio and theoretical stages, respectively
	2 and 4




	Distillation Column T-301
	Temperature and pressure for condenser (K and MPa, respectively)
	301.45 and 0.002




	Distillation Column T-301
	Temperature and pressure for reboiler (K and MPa, respectively)
	373.85 and 0.003




	Distillation Column T-401
	Reflux ratio and theoretical stages, respectively
	2 and 5




	Distillation Column T-401
	Temperature and pressure for condenser (K and MPa, respectively)
	593.35 and 0.001




	Distillation Column T-401
	Temperature and pressure for reboiler (K and MPa, respectively)
	571.95 and 0.002




	Distillation Column T-501
	Reflux ratio and theoretical stages, respectively
	2 and 5




	Reactor R-100
	Temperature and pressure in (K and bars, respectively)
	573.15 and 20




	Reactor R-100
	Methanol to oil molar ratio
	42:1




	Reactor R-100
	Assumed conversion of FFA (%)
	95




	Reactor R-100
	Assumed conversion (%)
	95
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Figure 2:      Plant simulation for biodiesel production by using the supercritical methanol method.



4.      RESULTS AND DISCUSSION

4.1          Comparison of Steady State Results

Table 2 presents the comparison of the results of the present simulation and the results reported in the literature. It can be observed that the results presented here are in good agreement with those reported by Sandra et al.13 Figure 3 presents the distribution of various costs in the biodiesel production. It can be clearly observed that the cost of feed oil is the major contributor to the total cost of biodiesel production. Any small deviations may be due to changes made in the process (Figure 2).


Table 2:      Comparison of simulation results.



	Parameters
	Results of present
simulation

	Results reported by
Sandra et al.13




	Biodiesel (kg h–1)
	1209.5

	1212.2




	Glycerol (kg h–1)
	122.1

	120.4




	Purity of FAME (mass %)
	97.2

	99.8




	Purity of glycerol (mass %)
	99.5

	99.7




	Reactor conversion (%)
	91

	97





4.2          Sensitivity Analysis

Figure 3 presents the variation of biodiesel (i.e., FAME) with the number of tubes in the plug flow reactor. It can be clearly seen that FAME production increases with an increase in the number of tubes. However, there is not much change after 18 tubes. Additionally, FAME increases with the increase in the diameter of each tube in the reactor as can be seen in Figure 4. There was no significant change when considering tube diameters beyond 0.35 ft because at this point, most of the oil is already converted to biodiesel. Increases in the number of tubes or the diameter of tubes may lead to increased capital investment. However, the cost analysis of these variables was not investigated in this study.
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Figure 3:      Effect of the number of tubes in the reactor on FAME production.
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Figure 4:      Effect of the diameter of each tube in the reactor on FAME production.



4.3          Economic Analysis of the Process

Table 3 presents the total capital cost, total manufacturing cost, raw materials cost and total utility cost associated with the concern process when assuming that the plant will be built and function in Malaysia. The estimated costs are given in U.S. dollars. The costs of methanol ($408.23 per ton), oil ($718.47 per ton), biodiesel ($1.464 per kg) and glycerol ($2 per kg) are considered. The plant is assumed to have 330 operating days per year. Figure 5 shows the distribution of various costs. Fifty six per cent of the total cost is contributed by the cost of feed oil. The second biggest contribution (27%) is steam, which is required to maintain high operating conditions in the unit operations.


Table 3:      Economic analysis of the process.



	Item

	Value



	Total capital cost (USD)
	10.62 × 106



	Total operating cost (USD per annum)
	1.76 × 107



	Total utility cost (USD per annum)
	4.27 × 106
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Figure 5:      Percentage composition for the total production cost.



4.4          Energy Analysis

Table 4 shows the energy spent in each unit operation. The distillation column for methanol recovery (T-301) consumes (1.573 MW) maximum energy out of an overall energy consumption. This accounts for more than 50% of the total energy consumption. High energy consumption in T-301 is due to the high methanol to oil ratio in the reactor, which has to be recovered and recycled to satisfy economic and environmental concerns. Additionally, heaters contribute to a significant amount of energy consumption (1.155 MW), as heating is required to maintain required operating conditions in the reactor. However, 0.523 MW is recovered using heat exchangers, which leads to the total energy consumption of 2.643 MW.


Table 4:      Energy spent in each unit operation.



	Unit operation
	Energy spent (kW)




	Pumps
	7.04




	Heaters
	1155




	Methanol recovery
	1573




	Biodiesel production
	421




	Glycerol purification
	9.90




	Salt removing (Evaporator)
	–




	Heat recovery
	523




	Total
	2643





5.      CONCLUSION

Here, the authors perform and validate the steady state simulation of biodiesel production using the supercritical methanol method. A sensitivity analysis of the simulated biodiesel process is also performed. Increasing the number of tubes in the reactor was found to increase biodiesel production. In addition, increasing the diameter of each tube in the reactor had a significant impact on biodiesel production. Economic analysis was performed using the Aspen Process Economic Analyzer. These results showed that the main factor contributing to the total production cost of biodiesel is the oil feedstock, which accounts for 56% of the total manufacturing cost. The maximum level of energy consumption was observed in the methanol recovering distillation column. This model can be used as a guide for the preliminary understanding of this process and also as a reference for more sophisticated models for plant design and the specification of process equipment.
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Abstract: In this paper, a new variant of particle swarm optimisation (PSO) called PSO with improved learning strategy (PSO-ILS) is developed. Specifically, an ILS module is proposed to generate a more effective and efficient exemplar, which could offer a more promising search direction to the PSO-ILS particle. Comparison is made on the PSO-ILS with 6 well-established PSO variants on 10 benchmark functions to investigate the optimisation capability of the proposed algorithm. The simulation results reveal that PSO-ILS outperforms its peers for the majority of the tested benchmarks by demonstrating superior search accuracy, reliability and efficiency.
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1.      INTRODUCTION

Inspired by the collective and collaborative behaviours of bird flocking and fish schooling in searching for food sources,1,2 Kennedy and Eberhart1 proposed a new population-based metaheuristic search (MS) algorithm called particle swarm optimisation (PSO) in 1995. From the optimisation perspective, each individual member (i.e., particle) of the PSO swarm represents a potential solution to a given problem, whereas the location of the food source denotes the global optimum solution. Each particle moves stochastically to locate the food source during the search process. In addition, all the population members of the PSO swarm collaborate with each other through information sharing. This interaction enables all the particles to gradually move towards the food sources and eventually leads to the swarm convergence.2 Since the inception of PSO, this algorithm has been applied to address various real-world problems due to its simplicity.3,4

Despite the popularity of PSO in computational intelligence research, previous study5 revealed that this algorithm suffers from the premature convergence issue because the particle has a high tendency to be trapped in local optima regions of the search space. Another notable drawback of PSO is the intense conflict between the exploration and exploitation searches of the algorithm. Excessive exploration tends to inhibit the swarm convergence, whereas too much exploitation can lead to the rapid diversity loss of swarm.6 Numerous works2–4 have been conducted by researchers in the past decades to address the aforementioned drawbacks of PSO. While some improved PSO variants can preserve the swarm diversity to some extent, these improvements are usually attained at the expense of slow convergence or complicated algorithmic structures. Addressing the premature convergence issue of PSO without significantly jeopardising the simplicity of the algorithmic frameworks and the algorithm’s convergence speed remains a challenge.

In this paper, a new PSO variant called the PSO with improved learning strategy (PSO-ILS) is proposed. The main innovation of this study is the development of a novel ILS module, which aims to generate promising exemplars to guide the search directions of PSO-ILS particles. Unlike most existing PSO variants, the exemplar of each PSO-ILS particle is unique and is generated by the ILS module by considering the useful information contributed by all population members of PSO-ILS.

The remainder of this paper is organised as follows. Section 2 briefly discusses some related works. Section 3 details the methodologies of the PSO-ILS. Section 4 provides the experimental settings and simulation results. Finally, Section 5 presents the conclusion drawn from the work performed.

2.      RELATED WORKS

In this section, the mechanism of the basic PSO (BPSO) is briefly discussed and is followed by a literature review of several well-established PSO variants.

2.1          Basic PSO

In BPSO, each particle i represents a potential solution of a D-dimensional problem, and its current state is associated with 2 vectors, i.e., the position vector Xi = [Xi1, Xi2, …, XiD] and the velocity vector Vi = [Vi1, Vi2, …, ViD]. Unlike most existing MS algorithms, each PSO particle i can memorise the best experience that it ever achieved, which is represented by the personal best position Pi = [Pi1, Pi2, …, PiD]. During the search process, the trajectory of each particle i in the search space is dynamically adjusted according to particle i’s self-cognitive component Pi, as well as the group best experience observed by the population, Pg = [Pg1, Pg2, …, PgD] [1, 6]. At the (t + 1)-th iteration of the search process, the d-th dimension of particle i’s velocity, Vi, d (t + 1), and position Xi, d (t + 1), are updated as follows:
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where i = 1, 2, …, S is the particle’s index; S is the population size; c1 and c2 are the acceleration coefficients that control the effects of the self-cognitive (i.e., Pi) and social (i.e., Pg) components, respectively; r1 and r2 are two random numbers generated from a uniform distribution with the range of [0, 1]; and ω is the inertia weight used to balance the exploration/exploitation searches of particles.6

2.2          PSO Variants and Improvements

Numerous studies have been performed to alleviate the drawbacks of BPSO. One of the most commonly used strategies is known as parameter adaptation. Clerc and Kennedy7 incorporated a constriction factor χ into the PSO to prevent swarm explosion. To achieve better regulation of exploration and exploitation searches, Ratnaweera et al.8 developed a time-varying acceleration coefficient strategy to dynamically change c1 and c2 with time. Alternatively, Juang et al.9 utilised the fuzzy set theory to adaptively adjust c1 and c2. Zhan et al.10 developed an evolutionary state estimation (ESE) module to identify the swarm’s evolutionary state of their proposed adaptive PSO (APSO). The outputs of the ESE module are used to adaptively adjust the ω, c1 and c2 of each APSO particle. Recently, Leu and Yeh11 proposed a grey PSO by capitalising on the grey relational analysis to tune the particles’ ω, c1 and c2.

Population topology emerges as another crucial factor to determine the PSO’s performance because this factor controls the information flow rate of the best solution within the swarm.12 Mendes et al.13 advocated that each particle’s movement is affected by all of its neighbourhood members and subsequently proposed the fully connected PSO (FIPS). A flexible PSO (FlexiPSO) was developed by Kathrada14 by combining the global and local versions of PSO. Montes de Oca et al.15 incorporated the concept of time-varying population topology into their Frankenstein PSO (FPSO). Initially, all FPSO particles are connected with fully connected topology. The topology connectivity of each FPSO particle is gradually decreased over time and eventually reduced into the ring topology. Marinakis and Marinaki16 proposed a PSO with expanding neighbourhood topology (PSOENT), where the particle’s neighbourhood expands based on the quality of the produced solutions.

Another promising line of research involves the exploration of the PSO learning strategy. Liang et al.17 proposed a comprehensive learning PSO (CLPSO) by suggesting that each dimensional component of a particle can learn from its Pi or from the other particle’s personal best position. An improved variant called feedback learning PSO with quadratic inertia weight (FLPSO-QIW) was proposed by Tang et al.,18 where each particle generates the potential exemplars from the first 50% of the fitter particles. Alternatively, Nasir et al.19 proposed the dynamic-neighbourhood-learning-based PSO (DNLPSO). The exemplar of each DNLPSO particle is selected from its neighbourhood made dynamic in nature. Huang et al.20 employed multiple global best particles to update the particle’s velocity in their example-based learning PSO (ELPSO). Zhan et al.21 capitalised on the excellent prediction capability of the orthogonal experiment design (OED) technique to construct effective exemplars for their proposed orthogonal learning PSO (OLPSO). Conversely, Zhou et al.22 proposed a random position PSO (RPPSO) by employing the random particle to guide the swarm.

3.      METHODOLOGY

The motivation for developing the ILS module is first described in this section, followed by a presentation of detailed descriptions of the ILS module. The velocity updating mechanism and the complete framework of the proposed PSO-ILS are then presented.

3.1          Motivation

Premature convergence remains a challenging issue for PSO, despite many improved variants of this algorithm having been developed to address this drawback.17 This issue occurs because the particles of most existing PSO variants tend to learn from the Pg particle and neglect the information contributed by the non-global best particle during the search process. The lack of interaction between the particles and other non-global best particles can lead to the rapid diversity loss of the swarm, especially when the algorithm is used to solve problems with complex search environments. This scenario tends to increase the likelihood of the PSO swarm being trapped in the inferior regions of the search space, which consequently leads to poor optimisation results.

Considering that there is no convincing evidence to indicate that the fittest particle in the neighbourhood can actually find a better region than the second or third fittest particles in the swarm,13 Liang et al.17 proposed a comprehensive learning strategy by advocating that all particles’ personal best positions could be used to update the velocity of each particle. The excellent performances of CLPSO17 and its descendants (e.g., FLPSO-QIW,18 DNLPSO,19 OLPSO,21 etc.) in solving the complex multimodal problems demonstrate that the derivation of exemplars from the non-fittest candidate solutions is a viable approach to sustain swarm diversity and to discourage the premature convergence.

It is noteworthy that the modified learning strategy of CLPSO and most of its descendants achieve the preservation of swarm diversity by reducing the effect of the Pg particle during the search process. This strategy, however, could introduce different trade-offs. For example, although CLPSO exhibits excellent capability in avoiding the local optima in complex multimodal problems, the convergence speed of this algorithm in solving unimodal and simple multimodal problems is significantly compromised.17 In addition, OLPSO has a more complicated algorithmic framework because this approach employs the OED technique, which is more mathematically intensive, to derive the exemplars.21

Motivated by these observations, we propose an ILS module that offers an innovative mechanism to generate a unique exemplar for each PSO-ILS particle. Specifically, these exemplars are derived to replace both the self-cognitive and social components to guide the particle’s search. Unlike the previous approaches, the proposed ILS module is less computationally intensive and is able to generate the exemplar with more promising guidance capability. The working mechanism of the ILS module is described in the following subsection.

3.2          ILS Module

The proposed ILS module works as follows. Initially, two exemplars called the cognitive exemplar (cexp,i) and the social exemplar (sexp,i) are generated for each PSO-ILS particle i. The proposed ILS module begins the derivations of both the cexp,i and sexp,i exemplars by sorting the personal best positions of all the population members based on the personal best fitness criterion. Specifically, the fittest members with personal best fitness ranked in the first quartile range are stored in upperi, whereas the members in the remaining 3 quartiles are stored in loweri. The approaches used to generate the sexp,i and cexp,i exemplars are explained as follows.

The sexp,i exemplar of particle i is generated from upperi via the random selection technique. Specifically, for each d-th dimensional component of sexp,i, i.e., sexp,i(d), one member of upperi is randomly selected, and the d-th dimensional component of this selected member is assigned to sexp,i(d). Considering that all the members of upperi have the same probability to be selected, each upperi member is regarded as having an equal opportunity to contribute itself in deriving each dimensional component of sexp,i.

On the other hand, the idea of constructing the cexp,i exemplar is inspired from Mendes et al.13 and is computed as follows:
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where Pk refers to the personal best positions of all the population members stored in loweri; rk is a random number in the range of [0, 1] and ck is the acceleration coefficient that is equally distributed among the Ni members from loweri, which is calculated as ck = call/Ni, where ck = 4.113 Equation 3 also allows all the members in the loweri to have equal chances to contribute themselves during the derivation of the cexp,i exemplar.

Considering that the guidance of two exemplars might cause the “oscillation” phenomenon, as described in literature,21 the third exemplar called the overall exemplar (oexp,i) is derived from both the sexp,i and cexp,i exemplars (via a simple crossover procedure) to guide the particle i during the optimisation process. Specifically, if a randomly generated number is smaller than 0.5, the d-th dimensional component of oexp,i, i.e., oexp,i(d), is donated by the sexp,i(d). Otherwise, it is obtained from the d-th dimensional component of cexp,i.

The overall implementation of the proposed ILS module is illustrated in Figure 1 and includes the procedures for deriving the sexp,i, cexp,i and oexp,i exemplars. Notably, the Pg particle in the population could be replaced by the newly obtained oexp,i exemplar if the latter has a more promising fitness value than the former.
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Figure 1:      Implementation of ILS module.



3.3          Velocity Updating Mechanism of PSO-ILS

Unlike BPSO, the proposed PSO-ILS updates the velocity of particle i based on the oexp,i exemplar instead of Pi and Pg. Considering that the derivation of oexp,i involves the stochastic mechanism, two possible cases can be encountered: (1) the oexp,i exemplar has better fitness than the personal best fitness of particle i [i.e., f(oexp,i) <f (Pi)]; or (2) the oexp,i exemplar has equal or worse fitness than the personal best fitness of particle i [i.e., f(oexp,i) ≥ f(Pi)].

For case 1, particle i is allowed to be attracted towards the fitter oexp,i exemplar because the latter has better fitness and hence is more likely to offer a prominent search direction to guide the former. For case 2, particle i is encouraged to be repelled away from the inferior oexp,i exemplar because it is unlikely for the latter to improve the former’s fitness. The new velocity update mechanism that is used to update the velocity of each PSO-ILS particle (i.e., Vi) is mathematically described as:
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where r3 and r4 are random numbers ranging between 0 and 1.

Once the new velocity of particle i is obtained from Equation 4, the new position of particle i (i.e., Xi) is computed using Equation 2. The updated fitness of particle i, i.e., f(Xi), is then evaluated and compared with those of Pi and Pg. The updated position of particle i will replace both Pi and Pg if the former has better fitness than the latter two.

3.4          Complete Framework of PSO-ILS

The complete implementation of the proposed PSO-ILS is presented in Figure 2. To conserve computational resources, particle i will only reconstruct the oexp,i exemplar if this exemplar fails to update the Pg m successive times. The variable flagi is defined to monitor the successive iteration when particle i fails to improve the global best solution. Notably, too small or too large values of m are undesirable. The former tends to reconstruct the oexp,i exemplar frequently and thus jeopardises the particle’s search direction, while the latter could waste many computational resources on the local optima with the oexp,i exemplar, which is no longer effective.
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Figure 2:      Complete framework of PSO-ILS.



4.      EXPERIMENTAL

4.1          Benchmark Functions

Ten benchmark functions used for the performance evaluations are presented in Tables 1 and 2, which provides brief descriptions of the benchmarks’ formulae, their feasible search range RG, and their accuracy level ε. All the employed benchmarks have different fitness landscapes, and the fitness value of their respective global optimum is equal to zero, i.e., Fmin = 0.


Table 1:      Formulae of ten benchmark functions used in this study.
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Table 2:      The search range and accuracy level of ten employed benchmark functions.



	f
	Function
	RG
	ε



	F1
	Sphere
	[–100,100]D
	1.0E–6



	F2
	Schewefel 2.22
	[–10,10]D
	1.0E–6



	F3
	Schewefel 1.2
	[–100,100]D
	1.0E–6



	F4
	Schwefel 1.2
	[–100,100]D
	1.0E–6



	F5
	Hyper Ellipsoid
	[–100,100]D
	1.0E–6



	F6
	Rastrigin
	[–5.12,5.12]D
	1.0E–2



	F7
	Noncontinuous Rastrigin
	[–5.12,5.12]D
	1.0E–2



	F8
	Griewank
	[–600,600]D
	1.0E–2



	F9
	Ackley
	[–32,32]D
	1.0E–2



	F10
	Weierstrass
	[–0.5,0.5]D
	1.0E–2




4.2          Simulation Settings of All Involved PSO Variants

6 well-established PSO variants are employed for extensive comparison with PSO-ILS. CLPSO, FLPSO-QIW, FIPS and OLPSO were selected because their learning strategies share specific similarities with that of PSO-ILS, i.e., these variants derive the exemplars from non-fittest solutions to guide the search. APSO is used to investigate the effectiveness of our proposed strategy against the parameter adaptation approach. In addition, FlexiPSO is the representative PSO variant developed from the different swarm topology.

The parameter settings of all the tested algorithms were extracted from their respective literature and are summarised in Table 3. The parameter settings of the selected peer algorithms are optimal, considering that their respective authors tuned these parameters using similar benchmarks. In addition, our empirical study reveals that the proposed PSO-ISL with m = 8 delivers satisfactory search performance. In this paper, the employed benchmarks are solved in 10 dimensions. All the involved algorithms were tested using the same population size of S = 10, with the stopping criterion of FEmax = 5.00E+04.


Table 3:      Parameter settings of the involved PSO algorithms.
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4.3          Performance Metrics

In this paper, the authors evaluate the algorithm’s performances based on three criteria, namely accuracy, reliability and efficiency, using the mean fitness value (Fmean), success rate (SR) and success performances (SP), respectively.18 Fmean is defined as the mean value of the differences between the best (i.e., lowest) fitness obtained by the algorithm and the fitness at the global optima (Fmin). SR denotes the consistency of an algorithm to achieve a successful run, i.e., when the algorithm achieves the solution with predefined ε. Finally, SP computes the number of FEs required by the algorithm to solve the problems with predefined ε.

The authors also employ a set of non-parametric statistical procedures23 to perform rigorous comparisons between PSO-ILS and its peers. Specifically, the Wilcoxon test23 is used for a pairwise comparison between the PSO-ISL and its peers. This test is conducted at the 5% significance level (i.e., α = 0.05), and the values of h, R+, R– and p are reported. The h value indicates whether the performance of PSO-ISL is better (i.e., h = ‘+’), insignificant (i.e., h = ‘=’), or worse (i.e., h = ‘–’) than the other six algorithms at the statistical level. R+ and R– denote the sum of ranks that PSO-ISL outperforms and underperforms compared with the other methods. In addition, the p-value represents the minimal level of significance for detecting differences. A p-value less than α provides strong evidence to indicate the better results achieved by the best algorithm are statistically significant and did not occur by chance.

To conduct the multiple comparisons of the algorithms in the set of test suite employed, the Friedman test23 and a set of post-hoc procedures to characterise the concrete differences among the algorithms were employed. In this study, the adjusted p-values (APVs) obtained were reported using the Bonferroni-Dunn, Holm and Hochberg methods.23

4.4          Comparison of PSO-MSCL with Other PSO Variants

4.4.1 Comparison of the Fmean results

In Table 4, it is observed that the proposed PSO-ILS exhibits the best search accuracy because this method outperforms its peers by a large margin for the majority of tested problems. Specifically, PSO-ILS is the only algorithm that successfully locates the global optima of all the tested benchmarks by achieving Fmean = 0.00E+00. CLPSO, FLPSO-QIW and OLPSO also exhibit their competitive searching accuracies in solving the tested benchmarks because these algorithms solve the functions F1, F2, F5, F9 and F10 with satisfactory Fmean values. However, FIPS is observed as the worst performing optimiser, exhibiting the largest (i.e., worst) Fmean values for almost all the tested problems.


Table 4:      Mean fitness, standard deviation and Wilcoxon test results for 10-D problems.
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Notably, the proposed PSO-ILS shares similarities with CLPSO, FLPSO-QIW, FIPS and OLPSO in terms of the algorithmic framework design because the particles of these PSO variants are also guided by exemplars generated from the non-fittest solutions. Based on these observations, it could be deduced that the search behaviours of these five PSO variants are governed by their respective exemplars. Intuitively, the qualities of the exemplars produced in the PSO-ILS, CLPSO, FLPSO-QIW, FIPS and OLPSO could be assessed by comparing the optimisation capabilities of these algorithms. Considering that the proposed PSO-ILS outperforms or performs similarly to CLPSO, FLPSO-QIW, FIPS and OLPSO in all the tested benchmarks, it is reasonable to conclude that the exemplars generated by the proposed ILS module are more effective than those of CLPSO, FLPSO-QIW, FIPS and OLPSO. In other words, the exemplars of PSO-ILS are more capable of guiding their particles towards the promising regions of the search space compared with the other four peers.

4.4.2 Comparison of the non-parametric statistical test

The pairwise comparison results between PSO-ILS and its peers using the Wilcoxon test are summarised in Tables 4 and 5. Specifically, Table 4 presents the pairwise comparison results in each employed benchmark using the h values, whereas Table 5 reports the R+ and R– values obtained for each comparison and the associated p-value.


Table 4:      Wilcoxon test between PSO-ILS and 6 other variants.



	PSO-ILS vs.

	APSO

	CLPSO

	FLPSO-QIW

	FlexiPSO

	FIPS

	OLPSO




	R+

	55.0

	45.0

	55.0

	55.0

	55.0

	55.0




	R−

	0.0

	0.0

	0.0

	0.0

	0.0

	0.0




	p-value

	1.95E–03

	3.91E–03

	1.95E–03

	1.95E–03

	1.95E–03

	3.91E–03





Table 4 demonstrates that the h values obtained from the Wilcoxon test are consistent with the reported Fmean values. This finding implies that the number of problems for which PSO-ILS significantly outperforms its peers is much larger than the number of problems for which the former is statistically equivalent to the latter. Table 5 confirms the significant improvements of PSO-ILS over its six peers in the independent pairwise comparison because all the p-values attained from the Wilcoxon test in Table 4 are less than α = 0.05.


Table 5:      Average ranking and the associated p-value obtained through Friedman test.



	Algorithm

	PSO-ILS

	CLPSO

	OLPSO

	FLPSO-QIW

	FlexiPSO

	APSO




	Ranking

	1.55

	2.70

	3.50

	3.85

	4.90

	5.30




	Statistic

	32.80




	p-value

	1.10E-05





Multiple comparisons23 are also employed to rigorously evaluate the effectiveness of PSO-ILS. The results of the Friedman test, which include the average rankings of the compared algorithms and the associated p-values, are summarised in Table 6. PSO-ILS emerges as the best performing algorithm with the smallest average rank value of 1.55. Another notable observation from Table 6 is that the p-value computed using the Friedman test (i.e., p = 1.10E–05) is smaller than the level of significance considered (i.e., α = 0.05). This result implies that a significant global difference is detected among the compared algorithms.


Table 6:      Average ranking and associated p-value obtained using Friedman test.



	Algorithm

	PSO-ILS

	CLPSO

	OLPSO

	FLPSO-QIW

	FlexiPSO

	APSO




	Ranking

	1.55

	2.70

	3.50

	3.85

	4.90

	5.30




	Statistic

	32.80




	p-value

	1.10E–05





Based on these results, a set of post-hoc statistical analyses23 was performed to identify the concrete differences for the control algorithm (i.e., PSO-ILS). The associated z values, unadjusted p-values and adjusted p-values (APVs) obtained from the aforementioned post-hoc procedures are presented in Table 7. At the significant level of α = 0.05, all the post-hoc procedures confirm the improvement of PSO-ILS over the FIPS, APSO and FlexiPSO algorithms. The Holm and Hochberg procedures reveal more powerful capabilities than the Bonferroni-Dunn procedure because the former tests are able to confirm the significant outperformance of PSO-ILS against FLPSO-QIW and OLPSO at α = 0.10.


Table 7:      Adjusted p-values (APVs) obtained using Bonferroni-Dunn, Holm  and Hochberg procedures.



	PSO-ILS vs.
	z

	Unadjusted p

	Bonferroni-Dunn p

	Holm p

	Hochberg p




	FIPS
	4.81E+00

	1.00E–06

	9.00E–06

	9.00E–06

	9.00E–06




	APSO
	3.88E+00

	1.04E–04

	6.23E–04

	5.19E–04

	5.19E–04




	FlexiPSO
	3.47E+00

	5.25E–04

	3.15E–03

	2.10E–03

	2.10E–03




	FLPSO-QIW
	2.38E+00

	1.73E–02

	1.04E–01

	5.18E–02

	5.18E–02




	OLPSO
	2.02E+00

	4.35E–02

	2.61E–01

	8.71E–02

	8.71E–02




	CLPSO
	1.19E+00

	2.34E–01

	1.00E+00

	2.34E–01

	2.34E–01





4.4.3 Comparison of the SR results

Table 8 demonstrates that PSO-ILS exhibits superior searching reliability, considering that this algorithm completely solves all the tested benchmarks with SR = 100%. Specifically, PSO-ILS is the only algorithm that successfully solves functions F3 and F8 within the predefined accuracy level in all the independent simulation runs. CLPSO, FLPSO-QIW and OLPSO also exhibit relatively robust search reliabilities because these PSO variants successfully solve some selected benchmarks (i.e., functions F1, F2, F4, F5, F9 and F10) with 100% success rate. In contrast, FlexiPSO has the worst search reliability because this algorithm produces SR = 0.00% in most of the benchmarks, i.e., five out of ten tested problems.

The competitive search reliabilities of the proposed PSO-ILS, CLPSO, FLPSO-QIW and OLPSO in solving the tested benchmarks imply that the strategy of deriving the exemplar from the non-fittest particles in the population is indeed viable to guide the PSO swarm towards the optimal regions of the search space. Among the four aforementioned PSO variants, the proposed PSO-ILS is considered to generate the most effective exemplars because this algorithm exhibits the most robust search reliability in solving all the tested benchmarks.

4.4.4 Comparison of the SP results

Obtaining the SP value is impossible if an algorithm never solves a particle problem (i.e., SR = 0%) because the SP value denotes the computational cost, i.e., the number of fitness evaluations (FEs), required by an algorithm to solve the problem with pre-specified ε. In this scenario, an infinity value “Inf” is assigned to the SP value, and only the convergence graphs are used to justify the algorithm’s speed, as illustrated in Figure 3.
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Figure 3:      Convergence curves of the selected 10-D benchmark functions (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f) F6, (g) F7, (h) F8, (i) F9 and (i) F10.



 

In Table 8, we observe that PSO-ILS achieves the best SP values in all the tested benchmarks. This observation implies that our proposed algorithms require the least FEs to solve the given problems with acceptable ε. The excellent convergence characteristics exhibited by the PSO-ILS in solving all the tested problems are also illustrated by their respective convergence curves, as observed in Figure 3. Specifically, we observe a typical feature exhibited by the convergence curves of the PSO-ILS in all the tested problems, that is, a curve that sharply drops off at one point, usually during the early stage of the optimisation. This observation implies that the proposed PSO-ILS tends to exhibit faster convergence compared with the other algorithms, especially during the early stage of search process. However, the convergence graphs in Figure 3 reveal that most of the compared peers tend to stagnate at local optima during the early or middle stages of optimisation. This demerit prevents the compared peers from achieving promising solutions for the tested problems.

Although the proposed PSO-ILS, CLPSO, FLPSO-QIW, FIPS and OLPSO algorithms employ exemplars derived from the non-fittest particles to guide the search, the SP values produced by these algorithms are significantly different. Specifically, the SP values produces by PSO-ILS range from 102 to 103, whereas the other four compared peers have SP values ranging from 103 to 105. These observations indicate that the exemplars generated by the proposed ILS modules are more efficient in guiding the PSO swarm compared with CLPSO, FLPSO-QIW, FIPS and OLPSO. The rapid convergence characteristic of PSO-ILS enables the proposed algorithm to locate and exploit the optimal regions of the search space earlier than its peers. Thus, PSO-ILS has a greater opportunity to achieve higher quality solutions than the other algorithms in solving the tested benchmarks.


Table 8:      Success rate and success performance results for 50-D problem.
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5.      CONCLUSION

This paper presents an enhanced PSO algorithm called PSO-ILS. An innovative mechanism has been developed in the proposed ILS module to construct a more promising and efficient exemplar. This exemplar replaces the particle’s self-cognitive and social components and is used to guide the particle’s search direction. Based on the experimental results, it can be concluded that the proposed PSO-ILS significantly outperforms its peers in terms of search accuracy, reliability and efficiency. The results further suggest that the exemplar generated by the ILS module is more effective and efficient than that generated by the other PSO variants, which employ similar search mechanisms, i.e., CLPSO, FLPSO-QIW, FIPS and OLPSO.
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Abstract: Understanding the dynamic behaviour of oven temperature is important to ensure proper temperature control during baking. This paper presents the development of an empirical model for the cake baking process with airflow. Increasing the airflow velocity to 100% and the baking temperature by 10°C reduced the temperature overshoot by 75%–86% at the oven centre. The resulting moisture contents of the cakes exhibited 8% differences or less. Empirical models were developed by applying step changes in the baking temperature and airflow velocity and can be represented by second-order-plus-time-delay (SOPTD). The response to changes in airflow was 61% faster compared to changes in baking temperature, which indicated that airflow is more significant in influencing convection heat transfer during baking.
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1.      INTRODUCTION

In food processing, baking is a common process that involves simultaneous complex physical, chemical and biochemical changes. This process requires an efficient operating chamber, commonly called an oven. The oven efficiency depends on heater size, oven size, insulation in the oven, ambient temperature, air circulation within the oven, air humidity, oven load and many other factors. Consequently, the final product can have inconsistent quality.1,2

Researchers have investigated methods to improve the product quality and make the process more efficient. These approaches include mathematical modelling, baking process design and optimisation of oven conditions.3–5 Mathematical modelling is a practical tool that is useful for pre-design, optimisation and process control. By using the model, the interaction between the oven condition and the product can be measured easily, therefore minimising the work required in baking as well as reducing energy loss.5

Currently, extensive studies on modelling baking products such as cakes,5–7 breads8–9 and biscuits10 can be found in the literature. However, the models presented focus only on such experimental conditions as the moisture, texture, volume and temperature of the product. The oven conditions during the baking process should be considered in the model to have a clear understanding for the purpose of control. These conditions include the actual oven temperature, airflow velocity and humidity. Among these factors, studies on the effect of airflow on temperature control during baking remain limited.

Therefore, the aim of this paper is to develop an empirical model for the baking process with airflow, controlled under a Proportional-Integral-Derivative (PID) controller. The effect of the process conditions on the final product is also highlighted.

2.      EXPERIMENTAL

A standard cake batter recipe was used. The ingredients were mixed according to a standard creaming method using a hand mixer (Panasonic, MKGH1, Osaka). Batter with an initial weight range between 444 g and 448 g was produced per batch and then baked for 30 min. The oven was preheated to 160°C with airflow 15 min before the baking experiment to obtain a uniform baking condition.

The oven used was an electrical convection oven, 2.6 kW power, 66.2 l working volume, with overall outer dimensions of 60 × 59.5 × 56 cm3, from Gierre Ik-Interklimat S.P.A. (Milano). The case material and work chamber material were made of stainless steel. Figure 1 shows the experimental setup for the baking process using a modified convective oven. The temperature profiles of the oven were measured using 3 wire K-type thermocouples, identified as T1, T2 and T3, attached near the top surface, bottom surface and hot airflow exit from the fan, respectively. The control panel was placed externally for oven temperature control purposes. The top, bottom and circular heater can be individually controlled using a PID controller. The controller can also be set to manual mode, in which on-off control occurs.

The oven offers two baking modes, namely, forced convection and static air. In the forced convection condition, air is constantly re-circulated inside the oven by a fan installed on the back side of the oven. The fan is turned off in the static air condition. The velocity of airflow can be adjusted using a motor fan controller. The airflow values were 0 m s–1, 0.98 m s–1, 1.47 m s–1 and 1.88 m s–1, corresponding to 0%, 50%, 75% and 100%, respectively.

The step test was conducted after the oven reached a nearly steady temperature. Changes made during the baking process with airflow mode included the temperature and airflow velocity settings. For the first process, a step test for a temperature setting of 130°C was performed. The input was changed by magnitude of +10°C. The step test for the second process was a reduction of 50% in airflow velocity, from 1.88 m s–1 to 0.98 m s–1. The transfer functions of these processes were developed based on an empirical modelling method. The models were validated and justified.
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Figure 1:      Experimental configuration of the baking oven.



The final moisture content of the cake was compared for baking with the on-off controller and the PID controller. The moisture contents of the crust and crumb of the cakes were analysed separately by applying a standard method for the determination of total solids in biomass. A convection (drying) oven was used at 105°C ± 3°C for this purpose.

3.      RESULTS AND DISCUSSION

3.1          The Effect of Airflow on Oven Temperature Profile

The presence of airflow in the oven during baking process increased the heat homogeneity in the oven chamber, as shown in Figure 2, which depicts the temperature profile in the oven chamber during baking with and without airflow. The pattern of heating and cooling during the baking process obviously differed even when a similar controller type and settings were used.
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Figure 2:      Comparison of baking process for the presence of airflow.



The presence of airflow caused the top, centre and bottom of the oven chamber to achieve a homogenous temperature as soon as the baking began. Meanwhile, without airflow, the centre oven temperature did not reach the desired temperature even by the end of the baking process. With airflow, the actual temperature oscillates in a smaller range with a lower steady state error. In contrast, the temperature profile for baking without airflow shows a greater amplitude of oscillation and a longer time to reach steady state.

The percentages of overshoot for baking temperature ranges from 160°C to 180°C are tabulated in Table 1. Baking with airflow greatly reduced the overshoot. In general, there was a reduction of approximately 75%–86% in temperature overshoot in the oven chamber upon changing from 0% to 100% airflow. For example, the temperature overshoot was reduced almost 85% at the top of the oven chamber by airflow at a baking temperature of 180°C.


Table 1:      Comparison of the percentage of overshoot.



	 
	160

	170

	180




	Without airflow

	With airflow

	Without airflow

	With airflow

	Without airflow

	With airflow




	Top (T1)
	29.63

	4.54

	26.86

	5.10

	23.79

	3.52




	Centre (T2)
	17.19

	2.44

	17.16

	4.06

	12.98

	3.17




	Bottom (T3)
	30.27

	4.02

	25.65

	4.88

	24.54

	3.63





The centre location demonstrates the lowest overshoot for both baking conditions. The top and bottom of the oven have higher overshoot because of the effect of heating elements.11 Another factor that might contribute to this occurrence is the circulation of hot air. The advantage of baking with airflow is that the temperature in the centre is maintained near the set point. Therefore, a product located at the centre of the oven probably receives more consistent heat.12

3.2          Empirical Modelling of the Baking Process using PID Control

The general transfer function is developed from the block diagram in Figure 3. The corresponding general closed loop transfer function for PID control is given below:
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Figure 3:      General block diagram for oven temperature control.



The closed loop response is obtained using the controller parameters. The corresponding parameters lead to the equation for G1 below:

[image: art]

The empirical model is developed using experimental data from the closed loop system.13 The closed loop identification is conducted under PID control. The measurements taken at the top, bottom and hot air exit are identified as T1, T2 and T3 respectively. The model is developed based on the closed loop step response data on the exit hot air temperature (T3).
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Figure 4:      Transient response for hot air exit point, for a set point input of magnitude 10°C.



Figure 4 shows the hot air temperature profile in the oven operated under PID control. This figure represents the first process, that is, the step change in baking temperature from 130°C to 140°C. The response shows an under-damped transient behaviour. The approximate model is developed using a second order system plus time delay.14 The backward calculation for temperature changes, as described in a research,11 results in the following:
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Thus, substituting the values for K, θ (estimation from graph), τ and ζ into Equation 4 gave the following:
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The second process was conducted to examine changes in airflow velocity. The response for the reduction of 50% in airflow velocity, that is, from 1.88 m s–1 to 0.98 m s–1, is shown in Figure 5. The reduction in airflow velocity decreased the actual oven temperature by at least 5%.
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Figure 5:      Transient response for hot air exit point, for airflow change of –50%.



The corresponding calculation for the parameter estimation and transfer function for this response is given below:
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Thus,
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It is interesting to note that the time constant for the change in airflow is faster than the set point changes. However, changing the airflow results in higher gain and increases the time delay by a few seconds. This significant result can be used to inform future work on the simulation and tuning of baking process.

Evaluation of the model is required to determine how well the model fits the experimental data used for parameter estimation. Future validation work will compare the developed model to the simulation model and previous research found in the literature.

3.3          Comparison of Product Quality for Different Control Strategies

The changes in baking temperature and airflow velocity influenced the oven temperature significantly. The resulting oven temperature profile affects the baking mechanism by increasing or reducing the internal heating rate of cakes. This occurrence can be explained briefly as the effect of changing the heat transfer process in the oven.

The implication of temperature variation in the oven can be seen in the percentage of moisture content because, as the oven temperature increases, heat transfer to the cake also increases. Thus, the internal cake heating rate will increase simultaneously with the vapour evaporation rate of the cake.

Table 2 compares moisture content for several processes during baking. The moisture content for baking with airflow results in less than 8% differences compared to the condition without airflow, provided the same controller setting is used. However, the crumb of cakes is less affected by the varying oven operating condition than the crust of cakes. This difference is one reason most of the bakery production cuts off the crust part of the cakes, that is, to remove the part with inconsistent quality. This activity is a significant waste.


Table 2:      Moisture content of cakes for the various conditions.
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4.      CONCLUSION

Closed loop identification is studied using experimental data on the cake-baking process. Changing the temperature shows a slower response than changing the airflow velocity towards the oven temperature profile at the hot air exit point. The gain of the process with airflow shows higher value as well as a longer delay. Validation will be one part of the future work regarding this study. The different process conditions result in different final moisture contents of the cakes, especially in the crust. However, the percentage of moisture content only varies within a small range.
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Abstract: The application of the artificial neural network (ANN) model in chemical industries has grown due to its ability to solve complex model and online application problems. Typically, the ANN model is good at predicting data within the training range but is limited when predicting extrapolated data. Thus, in this paper, selected optimum multiple-input multiple-output (MIMO) and multiple-input single-output (MISO) models are used to predict the bottom (xb) compositions of extrapolated data. The MIMO and MISO models both managed to predict the extrapolated data with MSE values of 0.0078 and 0.0063 and with R2 values of 0.9986 and 0.9975, respectively.
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1.      INTRODUCTION

Batch reactive distillation (BRD) is a dynamic process that operates under unsteady conditions. By coupling reaction and distillation in a single unit, the model results in a large number of complex differential equations. Thus, the development of the model is expensive and time consuming to solve. Due to that, it may not be practical to use the complex differential equations to develop the BRD process. One alternative method for representing this process is to develop an empirical model. Artificial Neural Networks (ANNs) are one type of available empirical model that can be used to solve various types of mathematical problems in BRD, such as modelling,1,2 control systems,3 soft sensors,4,5 a combination of soft sensors and control,6,7 and optimisation.8

Recently, the BRD model has gained attention for use in esterification and transesterification processes. Extensive literature is available regarding fundamental models of the esterification process, such as ethyl acetate, butyl acetate, methyl acetate, and the hydrolysis of lactic acid and isopropyl acetate. However, the transesterification modelling process, especially for long chain fatty esters in batch reactive distillation, is limited. Li et al.8 developed a thorough fundamental model for isopropyl myristate (IPM) production in BRD. However, this model requires a large number of equations. Thus, shifting to the ANN model will simplify and expedite model convergence. In addition, the ANN model is advantageous for real time applications, such as control systems.

The feedforward neural network (FFNN) consists of three layers, namely input, hidden and output layers. Prior to developing the FFNN model, the input-output data with variables of different magnitudes must be scaled. The z-score normalisation technique is yet to be tested in the BRD process. On the other hand, the min-max normalisation technique is commonly used for BRD processes, as demonstrated by Bahar et al.4 and Konakom et al.,6 and is significantly effective for modelling the training range. In this work, a multiple-input multiple-output model (MIMO) and a multiple-input single-output model (MISO) were developed to predict bottom composition (xb). The developed MIMO and MISO models were both used to test their abilities for predicting extrapolated data and to test their performance in terms of their mean square errors (MSE) and R2 values.

2.      EXPERIMENTAL

2.1          Process Description

The transesterification model of methyl myristate and isopropanol in industrial scaled semi-batch reactive distillation (BRD) is simulated based on the work conducted by Seader et al.9 The simulation was conducted using the commercial simulator Batchfrac. All process variables were designed in Batchfrac to achieve 98% distillate purity and the complete conversion of methyl myristate. The distillation column consisted of 30 trays, with a total condenser and a reboiler. Prior to the simulation, the column pressure was computed using the procedure adopted by Jimoh et al.10 It was assumed that the reversible reaction shown in Equation 1 only occurred in the reboiler, and the reaction kinetics were obtained from Bashah et al.11
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The initial batch consisted of pure methyl myristate (MM), isopropanol (IP), methanol (M) and a homogeneous catalyst. The products formed from this reaction included isopropyl myristate (IPM) and methanol (the most volatile component). These products were collected in a reboiler and accumulator, respectively. After a specified reaction period, the limited flow of IP was continuously fed into the reboiler. Next, the results from the simulation were compared with the results obtained from Seader et al.9 When comparable results were achieved, the Batchfrac model in Aspen Plus® was used for the sensitivity study and for generating data for developing the ANN model.

2.2          Neural Network Model Development

The ANN model learns from the relationships between the input and output data. A few sets of input-output data for developing the ANN model were generated by the validated Batchfrac model.

2.2.1 Pre-processing and division of data

All of the raw data were of different magnitudes. Thus, the larger magnitude variables would be dominant over the smaller variables. Thus, the data must be normalised before model development. For this purpose, the z-score normalisation technique is used based on the mean and standard deviation of the given data, as shown in Equation 2. This method is useful when the minimum and maximum values of the variables are unknown. After the data are normalised, all of the set data are divided into training, validation testing and extrapolation data.

[image: art]

2.2.2 MIMO and MISO model development

The ANN consists of a number of inputs and outputs that are mapped together. The architecture of the model is a network between the input layer, hidden layer and output layer. Complex estimations were performed with the help of a nonlinear transfer function for the hidden layer whose features are controlled by the weight of the network. The learning activity is stopped after the prediction error falls below the specified error. A single layer FFNN is developed for both of the MIMO and MISO models.

After the training is complete, the model is validated using two different sets of validation data. This validation is performed to determine the optimum performance based on the average performance of the architectures. Next, the selected model is tested using independent testing data to confirm its performance. If a bad performance is obtained, the model must be retrained, and the steps are repeated until a good performance is observed (according to the mean square error [MSE] and R2). The detailed procedures are presented by Lei et al.12 Finally, the selected optimum model is tested using the extrapolated data to determine its ability for predicting data outside of its training range.

2.2.3 ANN extrapolation capability test

Typically, the optimum ANN model is capable of predicting the outputs within the training range. Thus, the capabilities of the optimum MIMO and MISO models for predicting extrapolated data were tested. A set of extrapolation data were simulated based on several possible scenarios and a constant reflux ratio was applied. The simulation results produced xb values ranging from 0.153 to 0.9996 kmol kmol–1 for the IPM in the reboiler. Meanwhile, the training data covered a range of 0.139 to 0.942 kmol kmol–1. The extrapolation abilities of the MIMO and MISO were evaluated for this scenario because the xb value exceeded the upper limit of the training range (0.942 kmol kmol–1). An extrapolation test was performed to simulate the actual situation where a different operation was used. Thus, if the model can estimate out-of-range data with good agreement, the ANN model does not need the data for all operation ranges for training.

3.      RESULTS AND DISCUSSION

The training data were used to achieve the performance goal, and the ANN model architectures were stored with different weights and biases. Next, the developed MIMO and MISO models were validated with two sets of validation data, which resulted in 12 input nodes, 12 hidden nodes and 2 output nodes with [12-12-2] and [11-12-1] for the optimum MIMO and MISO models, respectively. The detailed validation and testing results for the models are presented in Lei et al.12 Figure 1 and Figure 2 show the extrapolation capabilities of the MIMO and MISO models for predicting xb, respectively.
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Figure 1:      Prediction of the MIMO model (--- NN ··· target).
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Figure 2:      Prediction of the MISO model (--- NN ··· target).



Figure 1 and Figure 2 show that the models satisfactorily predicted the xb values with an MSE of 0.0078 and an R2 of 0.9986 for the MIMO model and an MSE of 0.0063 and an R2 of 0.9975 for the MISO model. When comparing these models, the MISO model resulted in better predictions than the MIMO model. This result occurred because the correlation between the input and output data of the MISO model was greater. Both figures show similar prediction trends with small deviations in the extrapolated data regions.

The failure of these models for predicting the extrapolated data well resulted from several factors. For example, insufficient historical data for catering to the dynamic process, the sensitivity of the normalisation technique to outliers, the nature of the nonlinear function inside the hidden neuron and the range of extrapolation data all contributed to the failure of the models. Most likely, the latter two processes control the robustness of the models for predicting extrapolated data. The out-of-training data will reach a constant value when it extends beyond the training range. Consequently, the ANN model cannot predict the data very well. In addition, this deviation results from a range of extrapolation data. Lei et al.12 found that the increment of the extrapolation range can affect the prediction error. Nevertheless, satisfactory prediction was achieved. Although the results show that the models satisfactorily predicted the extrapolation data, the models can fit the interpolated data very well.

4.      CONCLUSION

This paper examines the capability of the developed ANN MIMO [12-12-2] and MISO [11-12-1] models for predicting extrapolated bottom composition data. During the verification of the developed model on the testing data, both models predicted the data well with only small errors and little deviation when tested with the extrapolated data. The accuracies of the two models were compared, which indicated that the MISO model performed better because it produced a lower MSE value and a greater R2 value than the MIMO model. To improve the robustness of the model, some modifications to the nonlinear transfer function must be recommended and the extrapolation limits must be identified.
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