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Abstract: Formulations of natural hydrogeological phenomena have been derived, from 
experimentation and observation of Darcy fundamental law. Mathematical methods are 
also been applied to expand on these formulations, but the management of complexities 
which relate to subsurface heterogeneity is yet to be developed into better models. This 
study employs a thorough approach to modelling flow in an aquifer (a porous medium) 
with phenomenological parameters such as Transmissibility and Storage Coefficient on the 
basis of mathematical arguments. An overview of the essential components of mathematical 
background and a basic working knowledge of groundwater flow is presented. Equations 
obtained through the modelling process were used to separate variables and solve 
hypothetical problems. Based on finite-difference conservative scheme the essential 
components of aquifer were determined by solving problem of groundwater flow in a 
porous medium.
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1. INTRODUCTION

Groundwater is a component of the hydrologic cycle (Figure 1) which 
begins its journey as rainfall (precipitated water), percolates vertically downwards 
even to a greater depth through a geological formation, which could be soil and 
rock. Groundwater occurs in the cracks, joints and faults within a crystalline rock 
mass, and within the pore spaces of a sedimentary rock, such as sandstone. It is 
moves through and saturates a geologic formation (an aquifer/a porous medium), 
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which could be soil or rock. Water attains a level in the ground which all available 
and interconnected spaces in the soil or rock are saturated. This is called water 
table. The water table is not flat but slope the hills down the valley sides towards 
the river.

Figure 1: The hydrological cycle and groundwater flow (after).1

It is important to note that groundwater usually contains higher 
concentrations of natural dissolved materials than surface water. The materials 
dissolved in the water usually reflect the composition and solubility of the earth 
materials (soil or rock) that the groundwater is in contact with and time that it 
has been in the subsurface. Groundwater also plays a crucial role in sustaining 
rivers and streams, particularly during droughts when it becomes a valuable buffer. 
Many ecosystems including some of our most iconic depend on groundwater. 
Groundwater is a finite resource and aquifers can become depleted when extraction 
rates exceed replenishment or "recharge" rates, like surface water, groundwater 
can become polluted or contaminated.

The following are the importance of ground water:

1. It supplies drinking water, it helps grows our food (irrigation to grow 
crops).

2. It is an important component in many industrial processes.
3. It is a source of recharge for lakes, rivers and wetlands.

The pioneering solution of flow equations for aquifers was based on the 
analogy between flow of water in an aquifer and flow of heat in a thermal conductor.2 
The equation was adapted from heat transfer literature for two-dimensional radial 
flow to a point source in an infinite, homogeneous aquifer. Another extension 
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to the traditional form of Darcy law is the account for transitional flow between 
boundaries3 in comparing the solution with the Theis solutions4. However, the 
resulting answers are almost the same as these are graphical method of solutions 
and are in agreement with this work.

Theis solution was also applied to steady state radial flow which gives rise 
to a pumping well. It comes about from application of Darcy law to cylindrical 
shell control volume where the background he is the hydraulic head and h–h0 is the 
drawdown at the radial distance from the pumping well. Jacob observed that after 
pumping well had been running for sometimes, higher values of the infinite series 
become very small and could be approximated.

In spite of the tremendous advancement in the application of modelling 
groundwater flow, little work has been carried out in the area of groundwater flow 
and storage. The solution of a "force convention" problem has been illustrated in 
one dimension.5 The domain under study is an aquitard through which groundwater 
movement is vertical. This is because the fluids at depth are hotter than fluids near 
surface. The hotter fluids are less dense and lighter than the cooler fluids and tend 
to rise. A summary of these is among the several mechanisms that drive the flow of 
groundwater in sedimentary basins, topography ranks as one of the most important 
driving forces.6 

The Bausinesq's approximation is considered, and treatment of the coupled 
equation of heat and fluid flow for the assumption of a constant fluid density 
everywhere expect for the buoyancy driving force.7 The problem that arises in 
groundwater flow through a model in a fractured rock has also been a subject 
of research.8 They attempt to fit a conventional radial flow model to observe the 
drawdown at early time underestimate and later time overestimate. Moreover, 
there are many fractured rocks where the flow of groundwater does not fit the 
application of Darcy law, the geometry of which differs completely from porous 
media.

Investigation suggested that the flow is influenced by the geometry of 
the bedding parallel fractures, a feature that the model cannot account for.9,10 It is 
therefore possible that the equation may not be applicable to flow in porous media 
rather than a fractured aquifer. Rätz and It has been shown that the proposed Darcy's 
law relies on experimental results obtained from the flow of water through a one-
dimensional sand column, the geometry of which differs completely from that of 
a fracture.11,12 The derivation of a generalised groundwater flow equation is an 
indication that the contribution is to investigate the possibility of the development 
of a three-dimensional model for groundwater flow equation. Mathematical 
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Modelling is a tool that can be used for understanding of a groundwater system 
and its behaviour so as to predict its future response.

2. BACKGROUND OF STUDY AND PROBLEM FORMATION

The use of aquifers is increasing as both a source of water supply and 
a medium for storing various hazardous waters. As this usage expands, our 
knowledge of groundwater systems must also expand. 

In general, specifying the flow domain is a major question in formulating 
the groundwater flow problem. The governing equation is the groundwater flow 
equation, expressed as:
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where kxx, kyy, kzz are values of hydraulic conductivity along the x, y and z 
coordinates axes (L/T), h is the potentiometric head (L), R is a volumetric flux per 
unit volume representing sources or sinks of water (T–1), Ss is the Specific Storage 
(L–1) while T is the time (T).

The boundary conditions specify the flow equations at the boundary of the 
domain.13 The two common boundary conditions are:

1. specified head and
2. specified flow.

The initial condition defines the spatial distribution of hydraulic head 
everywhere in the flow domain at the initial time.

3. MATHEMATICAL AND MODEL FORMULATIONS

3.1 Mass Balance Theory

A balanced mass must be performed along with Darcy law to arrive at the 
groundwater flow equation. This balance is analogous to the energy balance used 
in heat transfer to arrive at the heat equation. It is simply a statement accounting 
that for a given control volume, aside from sources or sinks mass can neither be 
created nor destroyed. It follows that for a given increment of time at the difference 
between the mass flowing across the boundaries and the sources within the volume 
is the change in storage.14
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Therefore, the excess of in flow over outflow during a short time interval 
through the surface of the control volumes that are perpendicular to the xy- direction 
may be expressed as follows:
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T T T= - -  (2)

3.2 Fluid Mass Conservation

A fluid flow fluid through porous media can be described by differential 
equations.15 Since the flow is a function of several variables, it can be appropriately 
described by partial differential equations in which the special coordinates x, y and 
z and time (t) are the independent variables. In depriving the equations, the law of 
mass conservation and energy are employed.

The law of fluid mass conservation also stated that in a flow system, fluid 
mass is neither created nor destroyed, which translates the above statement into a 
mathematical expression.16,17 In this case, it is convenient to considered "control 
volume" within a flow region. The principle of conservation of fluid mass can now 
be stated as follows: The rate at which fluid mass enters the control volume minus 
the rate at which fluid mass leaves the control volume is equal to the rate at which 
fluid mass is accumulating in the elemental control volume.18

3.3 Control Volume Approach

Considering a very small part of an aquifer shown in Figure 2 as control 
volume, the general conservation statements, which incorporate boundary 
condition at the phreatic surfaces is still applicable.19 The shape of the control 
volume is arbitrary with a definite volume, fixed in space and its boundaries are 
called control surfaces. The amount and identity of matter in the control volume 
may with time but the shape and position of this volume remain fixed.

The continuity equation or equation of mass conservation is obtained by 
considering a small control volume in Cartesian coordinates (x,y,z) of dimensions 
and , which are parallel to x, y, z coordinate around the point P(x, y, z) in a porous 
medium domain. The vector (V) with components Vx, Vy, Vz in the x, y, z directions 
denote the mass flux of a fluid of density (ρ). The area faces normal to the x-axis is 
dy dz, the area of the faces normal to the y-axis is dx dz, and the area of the faces 
normal to the z-axis is dx dy.
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Figure 2: Control volume of dimensions, ∂x, ∂y, ∂z and centers p(x, y, z).

Assuming the aquifer is homogeneous and isotropic, the fluid moves only 
in one direction through the control volume. The actual motion can be subdivided 
on the basis of the components flow parallel to the three principal axes. For this 
analysis, we assumed the main characteristic flow in an aquifer is that flow is 
essentially horizontal. This is true, in a confined horizontal homogeneous, isotropic 
aquifer with fully penetrating wells. This is in order when the thicknesses of the 
aquifer vary in such a way that is much smaller than the aquifer thickness itself. 
This assumption fails in regions where the flow has a vertical component. However, 
in view of the fact that the thickness of the aquifer is much less than the horizontal 
length involved, the assumption of essentially horizontal flow may be considered 
a good approximation.

Therefore, under certain conditions, instead of considering the flow in 
three dimensional with h(x, y, z, t) we may treat the problem in terms of an average 
head, h = h(x, y, t) if the flow is two dimensional in the horizontal xy- plane. All 
terms from control volume involving first and second derivatives with respect to 
z- axis vanish.

The general continuity equation is:

q = av (3)

where q is the flow rate, volume/time (L3T–1), a  is cross sectional area perpendicular 
to the flow, (L2) while v is the flow velocity, length/time (LT–1).
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If Q is the total flow rate, then the mass flux Vx = w qx is the portion parallel 
to the x- axis, where pw is the water density and Vy = w qy  in the y- direction 
respectively.

4. DERIVATION OF GROUNDWATER FLOW EQUATION 

The groundwater flow equation is a mathematical relationship, which 
describes the flow of water through a geological formation that can store and 
transmit water. The steady state flow of groundwater is described by a form of the 
Laplace-equation, which is a form of potential flow and has analogs in numerous 
fields. The groundwater flow equation is often derived for a small Representative 
Elemental Volume (REV) as illustrated in Figure 2 where the properties of the 
medium are assumed to be effectively constant. A mass balance is done on the 
water flowing in and out of this small volume, the flux terms in the relationship 
being expressed in terms of head by using the constitutive equation (Darcy law), 
which requires that the flow is slow.

4.1 Flow in x- Direction 

Volume into face x = qxAx

where Ax = dydz
volume into face x = qxdydz

Vx = qxdydz

Outflow from x direction qxdydz + x
qx
2
2  dxdydz

= q q
x

x

x
2
2
+e odydz (4)

4.2 Flow in y- Direction

Volume into face y = qyAy

where Ay = dxdz
volume into face y = qydxdz 

Vy = qydxdz

Outflow from y direction qydxdz + y
qy

2
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q
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4.3 Flow in z- Direction

Volume into face z = qzAz

where Az = dxdy
volume into face z = qzdxdy 

Vz = qzdxdy

Outflow from z direction qzdxdy + z
qz
2
2  dxdydz

= q q
z

z

z
2
2
+e odxdy (6)

Total volume in flow = qxdydz + qydxdz + qzdxdy (7)
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Volume in – Volume out = Change in storage
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From continuity of mass, the net accumulation in the control volume where 
Vw of the volumetric water content and t is the time 

t
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2
2
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control volume is due to movement partial to the x- axis which is equal to the 
inflow less the outflow.
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Combining Equation 9 and 10, the net total accumulation of mass is the 
control volume yields:
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In vector notation q S t
h

s$d 2
2- =

Applying Darcy's law (for cases where hydraulic conductivity tensor axes are 
aligned with x, y, z axes):
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Where Kx, y, z are directional hydraulic conductivities substituting:
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Ground water flow equation for porous media which is both heterogeneous 
and anisotropic. In general,  groundwater flow equation. The various simplifying 
conditions are:

1. Heterogeneous and isotropic
Hydraulic conductivity kx = ky = kz but k = k (x, y, z).
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2. Anisotropic and homogenous
Hydraulic conductivity kx ≠ ky ≠ kz but all k's are constant in space.
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3. Homogeneous and isotropic
Hydraulic conductivity kx = ky = kz.
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4.4 Volumetric Water Content

The volumetric water content in the control volume is equal to Φdxdydz 
where Φ is the porosity. The initial mass of the water is ρwΦdxdydz. The volume of 
solid material is 1 – Φdxdydz. From Equation 6:
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Any change in the mass of water  with respect to time is given by:

t
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As the pressure in the control volume changes, the fluid density will 
change as the porosity of the aquifer. The compressibility of water (β) is defined as 
the rate of change in density with a change in pressure (ρ).

d
d

w
wbt t
t

=

d
d wb t t
t

=  (18)



Journal of Engineering Science, Vol. 14, 71–99, 2018 81

The aquifer also changes in volume with a change in pressure. We shall 
assume the only change is vertical. The aquifer compressibility (α) is given by:

adp dz
d dz

=
^ h

 (19)

As the aquifer expands, ϕ will change, but the volume of solid Vs will be 
constant, likewise, if the only deformation is the z- direction, d(dx) and d(dy) will 
be equal to zero.

1dV d dxdydzs z= -_ i9 C (20)

Differentiating Equation 19:
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The pressure (p) at a pointing the aquifer is equal to p0 + pwgh, where p0 
is atmospheric pressure, ρw is a constant and h is the height of a column of water 
above the point. Therefore,

dp = pwgdh, Equations 17 and 18 become
dpw = pwβ(gdh) (22)

and
d(dz)= –dzα(pwgdh) (23)

Equation 20 can be rearranged if d(dz) is replaced by Equation 22,

1
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if dx and dy are constant, the equation for change of mass with time in the control 
volume, Equation 16 can be expressed as:
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Substituting Equations 21, 22 and 23 into Equation 24 after minor 
manipulations yields:

t
h g g dxdydz t

h
w w2

2
2
2a zbt t= +8 B  (26)

The net accumulation of volumetric water content expressed in Equation 
7 is equal to Equation 25:
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From Equations 18, 19, 20 and 22, we obtained:
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For isotopic medium, we have, 
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Equation 29 is the main equation of flow for a confined aquifer which 
is the general equation for groundwater flow in three dimensional, we introduce 
storativity (S):

S m g gw wa zbt t= +_ i (30)

and transmissivity (T) = km where m is the aquifer thickness.

Therefore, from Equations 29 and 10, we have:
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A complete formulation of a generalised groundwater flow equation is 
obtained by combining mass conservation equation, Darcy's law and definition of 
specific storage equation, which require specifying:

1. the extent of the flow domain by assumptions,
2. the governing equation,
3. spatial distribution of properties e.g. hydraulic conductivity (k) and 

hydraulic head (h), specific storage (ss),
4. boundary conditions and
5. initial conditions.

In general, a generalised equation of groundwater flow equation in three-
dimensional equation is expressed as:
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Under this condition, instead of considering the flow in three dimension 
with h(x.y.t) since the flow is two-dimensional in the horizontal xy plane, all terms 
involving first and second derivative with respect to z- axis components vanish for 
flow in an aquifer that is plane surface.

The two-dimensional, transient two of groundwater is a confined isotropic 
aquifer is governed by the partial differential equation.
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The one-dimensional, transient flow of groundwater in a confined 
isotropic aquifer is governed by the partial differential equation. For 1-D problem, 
the pumping well is fully penetrating a non-leaking aquifer and the hydraulic 
conductivity (k) is an isotropic scaler. The assumption here is that the flow in an 
aquifer is essentially in horizontal direction and this assumed independent of y-and 
z-axis. 
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where, 

K = hydraulic conductivity,
h = hydraulic head,
t = the time and
ss = specific storage.

This equation is valid of a continuous aquifer, for which there is a value of 
K, t, Ss and h everywhere.

4.5 Equation of Unsteady Flow in a Leaky Aquifer 

Another useful coordinate system is three dimensional cylindrical 
coordinates (typically where a pumping well is a line source located at the origin 
parallel to the z- axis causing converging radial flow). Under these conditions, the 
above Equation 34 becomes (r being radial distance):
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We account for leakage using:
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Dividing by the aquifer transmissivity yields the equation:
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Using the same approach as the solution for the confined (Theis) solution, 
we obtain the leaky partial differential equation:
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We can find an approximate solution for Jacob condition i.e. n < 1.
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From Equations 38 and 39, we have:
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Again applying the borehole wall condition, 2 4Q rT r
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which is Hantush–Jacob solution.
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4.6 Solution to the Problem

Suppose that the three edges x = 0, x = L and y = 0 of a thin rectangular 
plate are maintained at zero temperature, h(0,y) = h(l, y) = h(x, 0) = 0 (45) and that 
the fourth edge y = h is maintained at a hydraulic distribution f(x), 

h(x, H) = f(x) (46)

until steady state conditions are realised as shown in Figure 3.

Figure 3: An illustration of steady state condition.

The hydraulic distribution throughout the plate is required. Thus we must 

determine that solution of Laplace's equation in two dimensions, 
x
h

y
h

2

2

2

2

2
2

2
2+  = 0 

(47) which takes on the prescribed boundary values in Equations 45 and 46. The 
method of separation of variables consists of seeking particular "product solutions" 
of equation 47 in the form.

hv(x, y) = x (u), y(y), (48)

where X is a function of x alone and Y is a function of y alone. Introducing Equation 

48 into Equation 47, there follows  
x
x Y X y

y
2

2

2

2

2
2

2

2
+  = 0 or, separating the variables,

1 1

X x
x

Y y
y

2

2

2

2

2
2

2

2
- =  (49)
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Since by hypothesis, the left-hand member of Equation 49 is independent 
of y and the equivalent right-hand member is independent of x, it follows that both 
sides must be independent of both x and y, and hence must be equal to a constant. 
If we call this arbitrary constant K2, there follows:

0x
x K X2

2
2

2
2 + =  (50[a])

0y
y

K Y2

2

2

2

2
+ =  (50[b])

Thus we see that the product (Equation 48) will satisfy (Equation 47) if 
x and y are solutions of Equation 50, regardless of the value of k. Because of the 
linearity of Equation 47, it follows that any linear combination of such solutions, 
corresponding to different values of k, will also satisfy Equation 47.

It is noticed that three of the boundary conditions are homogeneous. Thus, 
if each of the particular product solutions is required to satisfy Equation 45, any 
linear combination will also satisfy the same conditions. Equation 45 will be 
satisfied if:

x(0) = x(L) = 0 (51)

whereas k implies the condition:

y(0) = 0 (52)

Equations 50a and 50b constitute a previously considered Sturm-Lioville 
problem for which the characteristic values are:

1,2,3,k k L
n nn f
r= = =_ i, (53)

and the corresponding solutions (characteristic functions) are of the term:

sinX X A L
n x

n n
r= =  (54)

Corresponding to (Equation 52), the solution of (Equation 50b) which 
satisfies (Equation 52) is of the form.

sinhY Y B L
n y

n n
r

= =  (55)
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Thus it follows that any particular solution of the form: 

1,2,3,sin sinhh a L
n x

L
n y

nn n f
r r

= =_ i (56)

where we have written an = AnBn, satisfies equation (Equation 47) and the three 
boundary conditions (Equation 45) which is true for any series of the form.

sin sinhh a L
n x

L
n y

n1n
r r

=
3

=
/  (57)

if suitable convergence is assumed. It remains, then, to attempt to determine 
the coefficients an in Equation 57 in such a way that the remaining condition 
Equation 46 is satisfied, so that:

0sin sinhf x a L
n H

L
n x x L

1 nn 1 1r r=
3

=
^ c ^h m h/  (58[a])

But, from the theory of Fourier sine series, the coefficient sinha L
n H

n
r  

in this series must be of the form: 2
sin sinha L

n H
L f x L

n x dx
0

n
Lr r= ^ h#  and hence, 

writing Cn = an sinh(nπH/L), the required solution  Equation 57 takes the form,

, sin
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r
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where 2
sinC L f x L
n x dxn

L r=
3
^ h#  (59)

assuming appropriate convergence. Let the hydraulic head of five faces of a 
rectangular parallel piped be maintained at zero, 

H(0, y, z) = h(L, y, z) = h(x, 0, z) = h(x, 0, z) = h(x, L2, z) = h(x, y, 0) = 0 (60)

and suppose that the sixth face is maintained at a prescribed hydraulic distribution, 

h(x, y, H) = f(x, y) (61)

until steady-state conditions are attained. We again investigate the resultant 
distribution of hydraulised in the interior. If we assume a product reduction of the 
relevant equation,

0x
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2
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2
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in the form:
hv = x(u)Y(y)Z(z). (63)

The equation may be separated in the form:

X
X

Y
Y

Z
Z K12- = + =

m m m  (64)

The separation here depending upon the fact that the first member is 
independent of both y and z and the second equal member is independent of x. 
Hence we must have:

0X K X12+ =m  (65)

and after a second separation,

Y
Y

Z
Z K K1

2

2

2= - =
m m  (66)

Thus Y and Z are determined by the equations:

0Y K Y22+ =m  (67)

0Z K K Z1

2

2

2- + =m ` j  (68)

The homogeneous boundary conditions Equation 60 are satisfied by the 
product solution if the factors satisfy the conditions.

X(0) = X(L1) = 0 (69[a])

Y(0) = Y(L2) = 0 (69[b])

Z(0) = 0 (69[c])

We thus obtain from Equations 65, 67, 69(a) and 69(b):
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To write further K K L
m

L
n K2

1

2

2 2
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r  (74)

The solution of Equation 68 satisfying Equation 69(c) becomes:

Zmn = Cmn sinh KmnZ (75)

Thus, writing amn = AmBnCmn, we are led to assume the desired solution in the form:

, , sin sin sinhh x y z a L
m x

L
n y

K Z
1 211 mnnm mn
r r

=
33

==
_ i //  (76)

This expression satisfies Equation 19, as well as conditions of Equation 
17 for arbitrary values of the coefficients amn. It remains, then, to determine these 
coefficients, in such a way that the remaining condition of Equation 18 is satisfied 
if we introduce the abbreviation:

Cmn = amn sinh KmnH (77)

This condition takes the form of:

, 0 ,0sin sinf x y C L
m x

L
n y x h y L

1 211 2mnnm
1 1 1 1r r

=
33

==
_ _i i//  (78)

Thus the coefficients Cmn are the coefficients of the double Fourier sine-
series expansion of f(x,y) over the indicated rectangle (Figure 4).

These coefficients are readily determined by a simple extension of the 
methods used in earlier work. If both Equations 77 and 78 are multiplied by

sin sinL
p x

L
q y

1 2

r re eo o where p and q are arbitrary positive integers and if the results 
are integrated over the rectangle, there follows:

, sin sinf x y L
p x

L
q y

dxdy
1 200

LL 21 r r_ i##

sin sin sin sinC L
p x

L
q y

L
m x

L
n y

dxdy
11

1 2 1 200
mnnm

LL
21 r r r r

=
33

==
// ##  

(79)



Journal of Engineering Science, Vol. 14, 71–99, 2018 91

The double integral on the right can be written as the product:

sin sin sin sinL
p x

L
m x

L
q y

L
n y

0 01 1 2 2

L L
1 2r r r r= =G G# #  (80)

and hence, this product vanishes unless p = m and q = n, in which case it has the 

value: 
2 2 4

L L L L1 2 1 2= . Thus the double series in the right-hand member of Equation 
79 reduces to a single term, for which m = p and n = q and there follows:

4
, sin sinC L L f x y L

m x
L
n y

dxdy
1 2 1 200

mn
LL 21 r r

= _ i##  (81)

with these values of Cmn, the solution of Equation 76 becomes, with the notation 
of Equation 77:

, sin sin
sinh

sinh
h x y C L

m x
L
n y

K
K Z

1 1 21 mnn mn

mn
m

r r
=

33

==
_ i //  (82)

where Kmn is defined by Equation 74.

Figure 4: A 3-D illustration.

4.7 Pressure and Permeability

Buoyancy forces due to temperature changes can be a driving mechanism 
for fluid flow. Because a geothermal gradient occurs in the subsurface, fluids at 
depth are hotter than fluids near the surface. The hotter fluids are less dense and 
lighter than the cooler fluids and tend to rise conversely, the cooler fluids are 
denser and heavier than the hotter fluids and tend to sink. Under certain condition, 
buoyancy-driven flow can occur in the absence of topographic driven flow is 
known as thermal convection.
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Recall that Darcy's law in terms of hydraulic head h is written as:

q K hd=-  (83)

Where q is the specific discharge vector and k is hydraulic conductivity. 
When changes in the fluid density are important, it is necessary to express Darcy's 
law in terms of pressure, p. This form of Darcy's law can be written as:

q K g
p

z
w

d t=- += G (84)

where wt  is the fluid density, g is acceleration due to gravity, and z is the elevation 
(above a given datum) of the point at which hydraulic head is measured because 
hydraulic conductivity is related to permeability (k) by:

k
gkw
n
t

=  (85)

where u is the dynamic viscosity of the fluid, Equation 46 can be written as:

q
k p

gzw

w
dn

t
t= += G (86)

For a slightly compressible fluid, it is generally acceptable to assume that 
the spatial variation in fluid density is small so that Equation 46 can be written as:

q k p gzwdn t=- +_ i (87)

Equation 50 is the common form of Darcy's law expressed in terms of 
pressure and permeability. The vector components of this equation are:

q k
x
p

x 2
2
n=-  (88)

q k
y
p

y 2
2
n=-  (89)

q k
x
p

gz w2
2

n t=- +< F (90)

where Equation 90 is the groundwater flow in geological formation.

5. DISCUSSION OF RESULTS

Flow in porous media has always been a matter of great interest and of 
great importance to Mathematicians. Certain geological formations are typical of 



Journal of Engineering Science, Vol. 14, 71–99, 2018 93

porous media comprising matrix of particles. Theoretically, when the void spaces 
in such media are only partially filled with water, the water is usually attracted 
to the particle surfaces through electrostatic forces between the water molecules' 
polar bonds and the particle substances. The surface attention draws the water up 
around the particle surfaces, leaving the air in the centre of the voids. As more 
water is added to the porous medium via the hydrological cycle, the air exists 
upwards and the area of free surface diminishes within the medium until the 
medium is saturated and there are no free surfaces within the voids and therefore, 
no soil suction force. 

In order to advance the study of flow through porous media, hydrogeological 
data are being analysed. This would further contribute to the unveiling knowledge 
of the applicability of flow in porous media. Table 1 is a result of pumping test 
conducted on a 200 mm well at the rate 1,150 1pm. The observation well 12.3 m 
away from the pumped well. Mathematical modelling approach makes it possible to 
determine the transmissibility and storage coefficients of the aquifer. Furthermore, 
what the drawdown would be at the end of 180 days both in the observation well, 
and in the pumped well can be computed using modified Theis equation.

Table 1: Time and drawdown data of a water well pumping test (adapted).20

Time (min) 2 3 5 7 9 12 15 20 40 60 90 120

Drawdown (m) 2.42 2.46 2.52 2.58 2.61 2.63 2.67 2.71 2.79 2.85 2.91 2.94

Figure 5: Drawdown-time semi-log plot.
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The time-drawdown plot is shown in Figure 5, from which ∆ s = 0.28 m 
per log-cycle of t, t0 (for sw = 0) is 37 × 10–10 min.
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Another production well is pumped for two hours at a constant rate of 
1,600 1pm. The drawdown in seven observation wells is shown in Table 2 below. 
In this case it is possible to determine the aquifer storage coefficient (S) and 
transmissibility (T).

Table 2: Observation well distance and drawdown from pumping test data (adapted).20

Observation well A B C D E F G

Distance from pumped well (m) 5 10 20 40 80 120 200

Drawdown (m) 5.35 4.35 3.35 2.35 1.4 0.8 0.3

The distance-drawdown plot is shown in Figure 6 from which ∆s = 3.25 m 
per log-cycle of r, r0 (for s = 0) is 210 m.

Figure 6: Drawdown-observation wells distance semi-log curve.
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Finally, a 400 mm well pumped at the rate of 2,000 1pm for 200 min 
yielded a drawdown of 1.51 m in an observation well 20 m from the pumping 
well. The pumping was stopped and the residual drawdowns during recovery in 
the observation well for two hours are given in Table 3. In a similar way, it is 
convenient to determine the aquifer storage and transmissibility.

The time-residual drawdown data are processed in Table 3 and the Theis 
recovery curve is plotted on a semi-log paper as shown in Figures 7.

Table 3: Pumping test conducted on water well for Theis solution t1 = 200 min.

Time since pumping 
stopped t' (min)

Residual drawdown 
s' (m)

Time since pumping started  
t = t1 + t' (min) Ratio t/t'

2 0.826 101 202

3 0.664 68 203

5 0.549 41 205

10 0.427 21 210

16 0.351 13.5 216

20 0.305 11 220

25 0.271 9 225

30 0.241 7.7 230

35 0.220 6.7 235

40 0.201 6 240

45 0.180 5.45 245

50 0.159 5 250

55 0.155 4.65 255

60 0.149 4.33 260

70 0.146 3.86 270

80 0.140 3.5 280

90 0.134 3.22 290

100 0.131 3 300

110 0.131 2.82 310

120 0.131 2.66 320
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Figure 7: Drawdown-time semi-log plot.

From the recovery plot, ∆s' = 0.41 m per log-cycle of t/t' and 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This study relates water flowing in porous media to hydraulic conductivity 
and permeability taking cognisance of the complexity of a geological formation. 
Darcy law is reduced to the form of Lapace equation in two-dimensional form with 
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series of curves of drawdown-time, and drawdown-observation wells distance. 
Time of pumping increases with an increase in the value of the drawdown. Both 
the analytical and numerical methods using finite difference show that water flow 
from a higher gradient to a gradient concentration. Drawdown increases as the 
observation well distance increases. Further researches should be encouraged to 
undertake findings in multiphase flow through a porous media. A comprehensive 
study is recommended on surfaced water and groundwater flow direction 
relationship. Study on mechanics of groundwater flow in porous media be extended 
to physical behaviour of fluids flow and their interaction with solid matrix.
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