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Abstract: Analytical solution for the boundary value problem (BVP) of elastic beams 
subjected to distributed load was investigated. Based on the study, dynamic application 
curves are developed for beam deflection. The partial differential equation of order four 
were analysed to determine the dynamic response of the elastic beam under consideration 
and solved analytically. Effects of different parameters such as the mass of the load, the 
length of the moving load, the distance covered by the moving load, the speed of the moving 
and the axial force were considered. Result revealed that the values of the deflection with 
acceleration being considered are higher than the system where acceleration of the moving 
load is negligible. These obtained results are in agreement with the existing results.
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1. INTRODUCTION

Most physical and engineering Boundary Value Problem (BVP) can be modelled 
as functional equations. However, for most of these equations, exact solutions 
are very rare. Several analytical and numerical methods are being developed to 
obtain approximate solutions for such models.1,2 Euler-Bernoulli beam is one 
of the models which is a distributed load. Analytical solutions for BVPs are 
always preferable compared to numerical solutions as they are more general 
and give a better understanding of the model behaviour. On the other hand, 
unfortunately, analytical solutions are limited to simple and idealised models.  
Due to great practical importance for technical engineers, the analysis of the 
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dynamic behaviour of beams on elastic foundations has attracted many researchers 
in the century and has therefore been the object of study by a huge number of 
researchers until now.3–12

The exact theoretical solutions of undamped vibrations for a simply 
supported Euler-Bernoulli beam was examined.10 The problem of the dynamic 
response of beams connected viscoelastically and subjected to uniform partially 
distributed moving force was studied.11 Result indicated that there was an increase 
in the amplitude of the beam for various values of the speed of the moving force 
considered, such that, as the speed of the moving force increases, the amplitude 
of the beam also increases. Furthermore, Oni and Ayankop-Andi8 considered 
the dynamic response of a Bernoulli-beam with viscous and structural damping 
coefficients subjected to partially distributed moving load. It was observed that 
as the mass of the beam, increases, the deflection also increases. However, the 
amplitude of the deflection increases when there are no structural and damping 
coefficients.

From the following literature, studies have only considered the moving 
load problem at constant speed, which can be traced to simplicity in solving 
compared to when acceleration is considered. However, the study of the effect of 
acceleration on the moving load problem is very scanty. But, it is necessary to put 
into consideration, the acceleration of the moving load. The analytical solution was 
employed to solve the partially distributed moving load taking acceleration into 
consideration. We assumed a series solution in the governing equation in order to 
transform the fourth order partial differential equation into order two.  

Hence, in this article, the dynamic response of Euler-Bernoulli beam 
subjected to accelerated moving load was investigated.

2. MATERIALS AND METHODS

In this article, a BVP under subjected to distributed moving load resting on 
a Winkler foundation is considered. As shown in Figure 1, the beam equation 
which is an example of a BVP of length (l ), a uniform cross-sectional area (A),  
a cross-sectional moment of inertia (I ), modulus of elasticity (E ) and density (ρ).
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Figure 1: Beam structure.

The model for the problem under consideration is relatively simple Winkler 
model. According to theory of structural vibration on using Euler-Bernoulli beam.2 
The governing equation is formulated as:
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In Equation 1, the one parameter (K) was used to model the elastic support based 
on classical Winkler model.

2.1 Classical Boundary Conditions

The initial condition of the beam at rest is given as:
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and the pertinent boundary conditions for the problem under consideration are:
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The external load in Equation 1 is defined by:
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The reaction force (f) exerted by mass (m) is defined as:
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Substituting Equations 8, 9 and 10 into Equation 1 to obtain:
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2.2 Solution Techniques

In this section, we proceed to solve the above initial BVP described by  
Equation 12. Assume a solution of the form as:
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Differentiating Equation 14 with respect to x and with respect to t,
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Substituting Equations 14, 15, 16 and 17 into Equation 13, we have:
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Equation 19 becomes:
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Also, the applied force can be:
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Multiply Equation 22 by L
i xr  and integrate, we have:
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where L11 represent x a t
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In evaluating the integrals in Equations 25(b) to 25(f), we made use of the following:

,

,

H x
if x

if x
2

0
2

1
2

1

2
p
e

p
e

p
e

- - =
-

-
e d no

Z

[

\

]]]]]
]]]]]

,

,

H x
if x

if x
2

0
2

1
2

1

2
p
e

p
e

p
e

- + =
+

-
e d no

Z

[

\

]]]]]
]]]]]

By making use of the Dirac delta function, Equations 25(b) to 25(f) become:
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Evaluating the integrals in Equations 26(a) to 26(e), we finally obtained:
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Substituting Equations 26(a) to 26(d) and 27 into Equation 23:
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where L13 represents L
4rd n , L14 represents L

2rd n , b11 represents i + j and b12 represents 
i – j. Simplifying Equation 28, we have:
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which implies that
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Rearranging Equation 30, we have:
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where L EIL m L15 13 0 14t= + - .

3. NUMERICAL RESULTS AND DISCUSSION

Numerical computation has been carried out by using the central difference 
techniques. Applying this numerical method to derivatives in Equation 31,  
we obtained:
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Simplifying Equation 32, we finally obtain:
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4. RESULTS AND DISCUSSION

In this section, the following parameter were used for the numerical analysis:  
EI = 1.74 × 10–5, L = 10 m, j = 2, i = 2, ρ0 = 5, ξ = 0.12, , v = 3.3 m s–2, M = 50 kg,  
m = 984 kg m–2. The final results obtained for the problem under consideration  
is programmed in the MATLAB environment.

Figures 2(a) and 2(b) show the deflection of beam for different values of 
the mass of the load (M) for which the acceleration of the moving load is considered 
and neglected, respectively. It is observed that the deflection is increased by 
increasing the values of the M. The values of the deflection with acceleration being 
considered are higher than the system where acceleration of the moving load is 
negligible.
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Figure 2(a): Deflection of beam at various values of M (acceleration considered).
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Figure 2(b): Deflection for beam at various values of M (acceleration neglected).



Boundary Value Problem of Elastic Beams 88

On the other hand, Figures 3(a) and 3(b) show the deflection of beam  
for different values of the speed of the moving load (v) for which the acceleration 
of the moving load is considered and neglected, respectively. It is observed that 
the deflection increases as the values of v is increasing. It is seen that the values of 
the deflection with acceleration being considered is higher than the system where 
acceleration of the moving load is negligible.
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Figure 3(a): Deflection of beam at various values of v (acceleration considered).

1098765
x

W (x,t)

v = 3.3
v = 6.3
v = 9.3
v = 12.3

4

1.6

1.4

1.2

0.2

0.4

0.6

0.8

1

1.8

0 1 2 3

Figure 3(b): Deflection of beam for various values of v (acceleration neglected).
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The deflection of beam for different values of the length of the load (ξ )  
for which the acceleration of the moving load is considered and neglected are 
shown in Figures 4(a) and 4(b), respectively. It is observed that the deflection 
is increased by increasing the values of ξ and the values of the deflection with 
acceleration being considered is higher than the system where acceleration of the 
moving load is negligible.
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Figure 4(a): Deflection of beam for various values of ξ (acceleration considered).
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Figure 4(b): Deflection of beam for various values of ξ (acceleration neglected).
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For Figures 5(a) and 5(b), they show the deflection of beam for different 
values of the distance moved of the load (ϵ) for which the acceleration of the 
moving load is considered and neglected, respectively. It is observed that the 
deflection increases as the values of ϵ is increasing. It is seen that the values of 
the deflection with acceleration being considered is higher than the system where 
acceleration of the moving load is negligible.
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Figure 5(a): Deflection of beam for various values of ϵ (acceleration considered).
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Figure 5(b): Deflection of beams for various values of ϵ (acceleration neglected).
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Apart from that, the deflection of beam for different values of the axial 
force (ρ0) which the acceleration of the moving load is considered and neglected 
are shown in Figures 6(a) and 6(b), respectively. It is observed that the deflection is 
increased by increasing the values of ρ0. It is seen that the values of the deflection 
with acceleration being considered is higher than the system where acceleration of 
the moving load is negligible.
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Figure 6(a): Deflection of beam for various values of ρ0 (acceleration considered).
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Figure 6(b): Deflection of beam for various values of ρ0 (acceleration neglected).
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5. CONCLUSION

The dynamic behaviour of Euler-Bernoulli beam on Winkler foundation subjected 
to partially distributed moving load is investigated in this study. Analytical 
solutions are used to solve the problem under consideration. The beam responses 
investigated are deflection, shear force, velocity profile and bending moment. 
The beam responses are observed for different loads at different velocities. The 
analytical solutions are validated through comparison with existing analytical and 
numerical solutions. The series solution used here can be applied to any related 
analytical studies of this model. Acceleration of a traveling mass over a structural 
system, highly affects the dynamic response of the structural system. This will give 
the engineers some advantages to make a more realistic modelling of structural 
systems.
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