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Abstract: The Consultative Committee for Space Data Systems (CCSDS) has released the 
Lossless Multispectral and Hyperspectral Image Compression standard (CCSDS-MHC, 
also referred to as CCSDS-123) as the standard for lossless compressing the hyperspectral 
images taken by spaceborne/airborne imagers. Currently, most implementations of the 
CCSDS-MHC algorithm utilize a single processor thread for the compression process. 
However, CCSDS-MHC has the potential to operate on multi-threaded systems with the 
use of parallelization. The introduction of multi-threaded processing systems on space 
satellites could further decrease the execution time of the system. In this research, the 
aim is to design a parallelization algorithm for CCSDS-MHC using OpenMP. The first 
step of the research is converting the CCSDS-MHC algorithm into a full programme in C/
C++ with both compression and decompression features. Next, the parallelizable section 
of the algorithm is identified and coded using OpenMP. The algorithm is parallelized by 
dividing the bands of hyperspectral images into several continuous chunks and running 
them concurrently. The program is then tested in several systems with different numbers 
of threads. The execution of the parallelized CCSDS-MHC algorithm shows significant 
speedups for all the systems and hyperspectral images tested.

Keywords: Lossless hyperspectral image compression, CCSDS-123, OpenMP, Multicore 
processor

1.	 INTRODUCTION

Remote sensing can be defined as the measurement of objects of interests’ 
properties on the Earth surface using data acquired from aircraft and satellites. 
Remote sensing systems, especially satellite-based systems, provide many useful 
applications due to their ability to provide a repetitive and consistent view of the 
Earth. These applications include environmental assessment and monitoring, 
natural resource exploration, military surveillance and topography mapping.1 
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Due to the airborne and spaceborne nature of remote sensing systems, 
the systems rely on the propagated signals, such as electromagnetic waves, for 
information acquisition. The acquisition is done by specialized hyperspectral 
sensors that produce a 3-D hyperspectral image that consists of a few hundred 
spectral bands across the visible and infrared regions of the electromagnetic 
spectrum in one run with high spectral resolution. This produces very large 
hyperspectral images. 

This also provides a constant challenge for spaceborne remote sensing 
systems, which require the acquired image to be downloaded by operators. This is 
because the satellites have limited onboard storage and downlink bandwidth. 

To overcome this limitation, the hyperspectral image data undergo 
compression just after the acquisition occurs. Lossless compression is preferred 
for satellite-borne applications due to the need for post-processing at high fidelity 
and resolution.2 As a response, the Consultative Committee for Space Data 
Systems (CCSDS) has released the CCSDS 123.0-B-1 Lossless Multispectral and 
Hyperspectral Image Compression (CCSDS-MHC) standard as the main standard 
for lossless hyperspectral image compression.3

While the CCSDS-MHC algorithm provides state-of-the-art compression 
performance in low-complexity domains, there is always some need to improve 
various aspects of performance, such as execution time.4 One solution is to undergo 
parallelization.

Parallelization involves dividing a programme into several parts that can 
be solved at the same time with the same result. There is increasing interest in 
introducing multicore processors for next-generation satellites that could make use 
of parallelization for various tasks on satellites.5

To apply parallelization in the CCSDS-MHC algorithm, APIs such as 
OpenMP can be used. OpenMP consists of a set of compiler directives and a library 
of support functions in C/C++ for programme parallelization. By finding the right 
section of the CCSDS-MHC algorithm to be parallelized, the execution time of the 
algorithm can be greatly decreased.
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2.	 ALGORITHM OVERVIEW

The CCSDS-MHC algorithm is a variation of the fast lossless (FL) compression 
algorithm that uses 3D compression techniques.6 In the algorithm, only the 
compression part is specified and standardized.3 Nevertheless, both the compression 
and decompression parts of the algorithm will be introduced.

Fig. 1 shows the components of the compressor. The compressor of the 
CCSDS-MHC algorithm consists of two parts: the predictor and encoder. The 
predictor predicts the value of each image sample based on the values of a nearby 
sample in a small 3D neighborhood. The main difference between the predicted 
and actual sample values, or prediction residual, is the output of the predictor.

Figure 1: Compressor Schematic

Fig. 2 shows the flowchart of the predictor process based on steps specified 
by the standard.3 The encoder then encodes the mapped prediction residuals based 
on a statistical method known as the sample-adaptive entropy-coding approach. 
This forms sequences of data bits that consist of a header followed by the body. 
The header contains the compression parameters of the process, while the body 
contains codewords that are coded as mapped prediction residuals. The lengths of 
codewords vary according to the occurrence of the residual’s value. A value with 
a higher occurrence will have shorter codewords. The data bits are then written to 
an external file bit by bit and become the compressed image.
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Figure 2: Flowchart of the Prediction Process

The decompressor is the inverse of the compressor. Fig. 3 shows the 
components of the decompressor. Similarly, the decompressor also consists of 
two parts: a decoder and an inverse predictor. Both parts are the direct inverse 
of the compressor’s encoder and predictor, respectively. The decoder converts 
codewords back into mapped prediction residuals, while the inverse predictor 
converts the residuals back to the original image sample value. Both functions are 
similar to their counterparts, as the function still uses the same prediction method 
and statistical method, albeit with slightly different formulas for some parts of the 
calculations.

No
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Figure 3: Decompressor Schematic

3.	 PREVIOUS WORKS ON CCSDS-MHC PARALLELIZATION

Several literature reviews of previous works on CCSDS-MHC parallelization have 
been conducted to further understand the method of parallelization. A summary of 
these works is as follows.

Hopson et al. analyse the CCSDS-MHC algorithm and identify the part 
where parallelization can be applied with the usage of multicore central processing 
unit (CPU) architectures.7 In the paper, OpenMP is used for parallelization for 
a fixed platform (desktop) and mobile platform (laptop). The parallelization 
approach was used to buffer the data whenever there is a dependency on the data. 
This prevents the situation where one parallel execution thread needs to wait for 
data since the algorithm stage only begins when all the data required are computed. 
In fixed platforms, it was reported that parallelization can be efficiently done during 
the stages involving input formatting, data encoding and data packing. However, 
for the predictor stage, there was the need for a very large buffer, and it was not 
feasible for the parallelization process. However, under mobile platforms using 
Mobile OpenMP, the introduction of a buffer was not required. Instead, the image 
segmentation method is used. The input image was split into smaller parts, and 
each part underwent compression in a serial manner, albeit in different cores of the 
processor. The execution time was significantly faster.

Davidson and Bridges used CUDA, another parallel computing API, 
to perform CCSDS-MHC compression in GPU.4 The team used a multispectral 
image as an input, which contains a smaller number of bands (less than 10) 
compared to hyperspectral images. The image was segmented into individual 
tiles and compressed individually. Then, the team modified the CUDA programs 
to allow them to compress multiple tiles within a single thread block. With this 
implementation, a speed-up of 2.41 times was achieved. However, the team also 
concluded that this method was not so convincing when hyperspectral images are 
used as input.

Figure 2: Flowchart of the Prediction Process

The decompressor is the inverse of the compressor. Fig. 3 shows the 
components of the decompressor. Similarly, the decompressor also consists of 
two parts: a decoder and an inverse predictor. Both parts are the direct inverse 
of the compressor’s encoder and predictor, respectively. The decoder converts 
codewords back into mapped prediction residuals, while the inverse predictor 
converts the residuals back to the original image sample value. Both functions are 
similar to their counterparts, as the function still uses the same prediction method 
and statistical method, albeit with slightly different formulas for some parts of the 
calculations.

No
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Schwartz and Pinho used an embedded multicore platform to test several 
common image compression algorithms, including CCSDS-MHC.8 Input images 
were segmented into tiles and compressed individually. In this study, the team tried 
to find the effect of the number of images segmented on the execution time of the 
algorithms running in parallel. The team revealed that while separating the image 
into multiple tiles certainly makes the algorithms run faster. The tiles splitting 
can also increases the execution time compared to a low number of tiles. This is 
because the platform needs to expend time managing many tasks.

Olaru and Craus suggested an effective parallelization scheme for 
CCSDS-MHC.9 The 3D hyperspectral image was first decomposed into relatively 
independent blocks. These blocks were then distributed by a data manager into 
all available processing cores. A scheme known as the master-worker design 
paradigm was used. It consists of a single master node and multiple worker nodes. 
The master node splits the work into workers and then becomes one of the workers. 
However, it also coordinates the worker and collects the results from the worker. 
When a worker node finishes its assigned work, it receives the next task. This 
happens until all tasks are executed. One of the notable challenges arising in this 
method is the need for the extra effort in finding a way to split up the mapped 
prediction residuals into blocks for the encoding process.

Rodríguez et al. put spatial clustering (tiling), also known as segmented 
images, into the CCSDS-MHC compressor on a commercially available System on 
Programmable Chip (SoPC), ARTICo3 architecture. AVIRIS images with a spatial 
size of 512512 are tiled spatially with various sizes of up to 88 pixels. However, 
tiling is known to affect CR performance in comparison to the case without tiling, 
but it is beneficial to fault tolerance. Each sub-image (called a segment) would 
introduce its header, which makes the CR performance worse. Each segment is 
processed independently in an accelerator to speed up performance. The system 
managed to reach a throughput of 67 MSamples/s by using 16 accelerators.10

With the previous studies on improving the speed/throughput for the 
CCSDS-MHC algorithm using various hardware, such as multicore CPUs and 
GPUs, it is necessary to investigate the algorithm and optimise the flow so that 
the parallelization is performed efficiently without any buffer memory. In the 
algorithm, the local sum, σz, y, x (shown in Fig. 2), introduces data dependency that 
requires buffer memory and prevents parallelization on that particular part of the 
algorithm. This study overcomes this bottleneck to provide better parallelization 
to the algorithm. It is expected that the enhancement made in this research can be 
implemented on a hardware platform, such as a multicore processor, which is more 
suitable to use on satellite platforms than a desktop computer or GPU. This study 
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focused on the optimum parameters for the CCSDS-MHC algorithm to produce 
the best compression ratio (CR) without tiling for lossless hyperspectral images by 
utilising the full prediction mode of the standard, as suggested by Sanchez, Auge.11

4.	 METHODOLOGY

The development of parallelized CCSDS-MHC involves the four steps described 
in Fig. 4. Since the OpenMP is available in the C/C++ language, the CCSDS-MHC 
algorithm first needs to be coded in C/C++ based on the Java implementation 
available from the Group on Interactive Coding of Images (GICI).12 The algorithm 
will then be tested to ensure it works correctly. Next, the algorithm is parallelised 
by using OpenMP before testing the algorithm to assess its performance.

Start
Development of CCSDS-
MHC algorith with C++ 

language

Testing the CCSDS-
MHC algorithm written 

in C++ language

Parallelization of 
CCSDS-MHC algorithm

Testing of the 
parallelized CCSDS-

MHC algorithm
End

Figure 4: Flowchart of the Development of the Parallelised CCSDS-MHC Algorithm

4.1	 C/C++ Coding of the CCSDS-MHC Algorithm

The main objective of this research was to create a parallel version of the CCSDS-
MHC algorithm, therefore the algorithm was simplified considerably. First, in 
the original CCSDS-MHC algorithm, there are choices for the user to specify the 
method of calculating local sums, the prediction mode and the type of encoding 
approach. However, in this work, these choices are restricted to the neighbour-
oriented method, full prediction mode and sample-adaptive entropy coding 
approach fixed throughout the research. These configurations are chosen for the 
best lossless CR performance.3 Second, each user-defined parameter throughout 
the CCSDS-MHC algorithm is fixed to an optimum value suggested by Sanchez, 
Auge.11 Since the objective of this research is to evaluate the CCSDS-MHC 
algorithm in terms of execution time, these parameters are fixed to an optimum 
value so that the best CR can be obtained. The suggested parameters are listed in 
Table I below.
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Table I: Parameters Suggested for the CCSDS-MHC Algorithm11

Parameter Alias Value
Previous bands, P NUMBER_PREDICTION_BANDS 15
Dynamic range, D DYNAMIC_RANGE 16
Output word size OUTPUT_WORD_SIZE 4
Predictor meta-data 
flag

PREDICTOR_METADATA_FLAG False (0)

Coder meta-data 
flag

ENTROPYCODER_METADATA_FLAG False (0)

Local sum LOCAL_SUM_MODE Neighbour 
oriented mode (0)

Prediction mode PREDICTION_MODE Full prediction 
mode (0)

Register size REGISTER_SIZE 32
Weight initialisation 
method

WEIGHT_INITIALIZATION_METHOD Default (0)

Weight initialisation 
table flag

WEIGHT_INITIALIZATION_TF False (0)

Weight component 
resolution

WEIGHT_COMPONENT_RESOLUTION 13

Weight update 
scaling exponent 
change interval

WEIGHT_UPDATE_SECI 64

Weight update 
scaling exponent 
initial parameter

WEIGHT_UPDATE_SE -1

Weight update 
scaling exponent

WEIGHT_UPDATE_SEFP 3

Adaptive encoder ENTROPY_CODER_TYPE Sample adaptive 
encoder (0)

Unary length limit UNARY_LENGTH_LIMIT 16
Rescaling counter 
size

RESCALING_COUNTER_SIZE 6

Initial count 
exponent

INITIAL_COUNT_EXPONENT 1

Initialisation 
accumulator table 
flag

ACCUMULATOR_INITIALIZATION_TF False (0)

Accumulator 
initialisation 
constant

ACCUMULATOR_INITIALIZATION_
CONSTANT

5
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Both the compression and decompression parts of the algorithm are coded 
in C/C++ in this research. This provides an easy way to test the validity of the 
coded algorithm by joining both parts together, which makes the output of the 
compressor the input of the decompressor. The correct algorithm will make its 
original image (input of the compressor) and its decompressed image (output 
of the decompressor) have the same value, pixel by pixel since the algorithm is 
lossless. The act of joining each part requires sharing an image array that consists 
of codewords. This requires additional care to eliminate the leading zeros problem 
of the codewords, where different codewords will have the same value when 
converted into integers. For example, codewords ‘01’ and ‘001’ will have the same 
values.

4.2	 Parallelization of the CCSDS-MHCc Compression Algorithm

In this research, only the compression part of the CCSDS-MHC algorithm will 
be parallelised. The first step of the parallelization is to identify the parts of the 
algorithm that are parallelizable. This can be done by drawing a data dependence 
graph for the algorithm, as shown in Fig. 5.

In Fig. 5, each band of the image has a large potential to be parallelized. 
The compression process for one band does not depend on the compression 
processes of another band. In the original algorithm, the compression process starts 
from the first band and continues to the last band, one at a time. This shows that 
the algorithm exhibits data parallelism for each band. Nevertheless, there is one 
data dependence present in the algorithm: the process of calculating the local sum, 
which involves the generation of a prediction neighbourhood. The generation of a 
prediction neighbourhood requires all the sample values of the current and a certain 
number of previous bands. However, since all pixel values of all bands are already 
obtained when the image is loaded, this problem can be solved by requesting the 
values of the involved bands required directly from the loaded image at the start 
of compression for every core, as opposed to the original algorithm, where band 
shifting is conducted.

The parallelization of the algorithm was performed using the OpenMP’s 
parallel for schedule directive. An ordinary parallel for a directive, which is common 
for coding data parallelism, is not used since the iterations are conducted by a 
random processor, and this requires the sample value requested for neighbourhood 
generation to be conducted for every band, which is slower compared to the band 
shifting. Under the parallel for schedule directive, a contiguous range of iterations 
called chunks is assigned to each processor. For example, when compressing 
8-band images under a system with two processors, a processor will compress 
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bands 0 to 3 and another processor will compress bands 4 to 7. This enables the 
sample value requesting method to run only one time, followed by a band shifting 
method for subsequent bands, which saves a lot of time.

Load image

Get samples of 
band z

Compression of band z
Calculate local sum

Calculate local 
difference

Calculate local 
difference vector

Calculate predicted 
local  difference

Calculate predicted 
sample

Calculate mapped 
predictor residual

Calculate codewords Get  counter and 
accumulator

Update counter 
and accumulator

Statistic 
init ial ization

Update 
weight vector

Get  weight 
vector

Weight  
init ial ization

Compression of 
band z+Pz

*

Get  samples 
of band z+Pz

*… … … … … … 

Compression of 
last band

Get samples 
of las t band

Write codewords 
to file

Compression of 
band z–1

Get samples 
of band z–1

Compression of 
band z–Pz

*

Get  samples 
of band z–Pz

* ... ...

Compression of 
band 0

Get  samples 
of band 0 ...

Figure 5: Data dependence graph of the CCSDS-MHC compression algorithm

4.3	 Testing Images and Environment

Four Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images, consisting 
of 224 spectral bands, and four Hyperion images were used for testing purposes.13, 

14 All the AVIRIS and Hyperion images were cropped from the top-left pixel to 
form a 512512 and 256256 spatial size, respectively. Only 196 spectral bands, 
which were classified as unique and calibrated by Thenkabail et al., were extracted 
and used for the Hyperion images.15 The images are listed in Table II.

Table II: AVIRIS and Hyperion Test Images

Dataset Hyperspectral Image (Abbrev.) Image Size (RowColumnBand)

AVIRIS

Cuprite Scene 1 (Cuprite1)

512512224
Jasper Ridge Scene 2 (Jasper2)

Low Latitude Scene 1 (Low1)

Lunar Lake Scene 2 (Lunar2)

Hyperion

EO1H0120312001129111P1_PF1_01 (Boston)

256256196
EO1H0140362001127110PP_AGS_01 (Edenton)

EO1H0090112001140111PP_PF1_01 (Greenland)

EO1H0150332001134111P1_AGS_01 (Portobago)
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Next, three computer systems with different numbers of processors 
(threads) were used to evaluate the parallelised CSSDS-MHC algorithm. The 
specifications of the systems are shown in Table III.

Table III: Computer System Used for Algorithm Evaluation

4-Thread System 8-Thread System 16-Thread System

OS Windows 10, 64-bit

CPU Type Intel Core i7-7500U 
(mobile)

Intel Core i7-6700K 
(desktop)

Intel Xeon E5-1660 
v4 (server)

Clock Speed 2.7 GHz 4.00 GHz 3.2 GHz

CPU cores 2 4 8

CPU threads 4 threads 8 threads 16 threads

RAM 12GB 8 GB 16 GB

Storage Type HDD HDD HDD

L1 Cache 128 KB 256 KB 512 KB

L2 Cache 512 KB 1.0 MB 2.0 MB

L3 Cache 4.0 MB 8.0 MB 20.0 MB

4.4	 Performance Indicator of the Parallelised Algorithm

The main performance indicator to assess the parallelised CCSDS-MHC algorithm 
is execution time. The execution time of a CCSDS-MHC algorithm starts at the time 
when the input image is done loading and ends when the last pixel is compressed 
and its codewords are written to the file. The improvement in execution time 
between sequential and parallel versions of the algorithm is quantified by speedup. 
Speedup is defined as the ratio between sequential execution time and parallel 
execution time.16 

Another common performance indicator, the compression ratio, is also 
calculated, although it is not important in this research. This is because the 
compression ratio is always the same with the same image since all the user 
parameters are fixed. The calculation is performed simply for reference purposes.

5.	 RESULTS AND DISCUSSION

5.1	 Compression Ratio of the CCSDS-MHC Algorithm

Table IV shows the compression ratio (CR) of the images tested with the algorithm. 
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Table IV: Compression Ratio of Tested Images

Hyperspectral Image Original Size (MBytes) Compressed Size (MBytes) CR

Cuprite1 117.44 35.81 3.28
Jasper2 36.05 3.26
Low1 39.29 2.99
Lunar2 36.13 3.25
Boston 25.69 12.83 2.00
Edenton 12.85 2.00
Greenland 10.93 2.35
Portobago 10.39 2.47

The table shows that there seems to be some correlation between the size 
of the images and CR. Such a correlation implies that the compression of smaller 
images results in less compression. A plausible explanation for this correlation 
is that the average bit length of the codewords is nearly the same for most of the 
images. This causes the rate of decrease of uncompressed image sizes to be faster 
than the rate of decrease of compressed image sizes, in turn causing a decrease in 
CR.

5.2	 Speedup of the Parallelised CCSDS-MHC Algorithm

Table V shows the average execution times for each dataset in each implementation. 
Table VI shows the speedups of all systems and the theoretical maximum speedup 
according to the Amdahl’s Law, shown in (1), where  is the number of processor 
threads in a system and  is the fraction of the operations in a computation that must 
be performed sequentially. In this research, the value of  is fixed to 0.1 (i.e., 10%) 
through rough estimation from the data dependency in the local sum calculation. 
The maximum speedup by the Amdahl’s Law is provided as a reference only.

Maximum speed up, 

Table V: Average Execution Time (seconds) for Sequential and Parallel Implementation

Execution Time (seconds)

4-Thread System 8-Thread System 16-Thread System

Dataset Sequential Parallel Sequential Parallel Sequential Parallel

AVIRIS 40.40 17.99 26.64 10.66 21.55 4.02

Hyperion 5.86 3.53 2.58 1.58 3.99 0.57
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Table VI: Speedup of Tested Datasets for Each System

Speedup

Dataset 4-Thread System 8-Thread System 16-Thread System

AVIRIS 2.25 2.50 5.37

Hyperion 1.66 1.63 7.06

 ψ with f = 0.1 3.08 4.71 6.40

Table VI shows that there is a significant speedup between the sequential 
and parallel versions of the algorithm across the tested systems for each 
hyperspectral dataset. For all the systems and datasets, a speedup value larger 
than one shows that the parallel implementation is faster than its corresponding 
sequential implementation. The 4-thread system and 8-thread system recorded 
almost the same performance in terms of the speedup value, while the 16-thread 
system had a far higher speedup value. Even though there was an almost identical 
speedup value between the 4- and 8-thread systems, the execution time (Table V) 
still favoured the 8-thread system due to differences in architecture (the 4-thread 
system was mobile and the 8-thread system was desktop), higher clock speed and 
bigger cache sizes. The larger RAM size in the 4-thread system in comparison to 
the 8-thread system does not affect the results. For the 16-thread system, which 
is a server-grade computing platform, similar trends have been observed, except 
for the processor’s clock speed, which is slightly lower than that of the 8-thread 
system. 

In reference to the maximum speedup, ψ by Amdahl’s Law, the differences 
between the measured results and the theoretical speedup are because the systems 
used in this research have different specifications, such as processor’s thread 
count, cache sizes, processor speeds and architectures, as well as RAM sizes. 
The processor’s thread count is the main factor to get the best execution time (in 
addition to the other factors, such as cache size, clock speed and RAM size), due to 
the parallelization of the algorithm that has been performed based on the available 
processor’s thread, as explained before. The CR from all systems is similar, as 
shown previously in Table IV.

When comparing the datasets, Hyperion can be executed faster than 
AVIRIS (Table V), mainly due to the smaller size (both spatially and spectrally) 
in the former dataset. This can also be observed in Table VI in terms of speedup. 
Moreover, the speedup for the Hyperion dataset in the 16-thread system (7.06) is 
larger than its theoretical speedup (6.40). Since OpenMP automatically handles the 
parallelization process between the processor thread, the value of f = 0.1 might not 
be suitable for the system and causes the difference.
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6.	 CONCLUSION AND FUTURE WORK

In conclusion, a hyperspectral image compression system based on the CCSDS-
MHC algorithm with the support of parallel processing has been successfully 
designed and developed. The algorithm is divided into chunks of bands and runs 
concurrently. This parallelization is done using OpenMP’s parallel for schedule 
directives. The parallelized algorithm is indeed run at a higher speed compared 
to its sequential counterparts, with a speedup of about 1.6 times to 7.0 times, 
depending on the number of threads in the system running the algorithm and 
the type of images. The AVIRIS dataset can be compressed from around 4 to 
18 seconds in the parallel implementation, compared to 21 to 40 seconds in the 
sequential counterparts. The Hyperion dataset, which has a smaller size, can be 
compressed from under one second to around four seconds in parallel compared to 
four to six seconds in the sequential implementation. Unlike the other studies that 
focused on tiling, this study focuses on the full spatial resolution of the images, 
which produces the best CR performance. This study also uses the full prediction 
mode to achieve the same objective.

In future research, it would be worthwhile to explore the impact of the 
parallelized algorithm in terms of compression ratio and execution time when 
user-defined parameters are changed. The implementation of hardware (multicore 
processors such as DSP and FPGA) is expected to produce a faster execution.
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