
Journal of Engineering Science, Vol. 18(1), 1–16, 2022

© Penerbit Universiti Sains Malaysia, 2022. This work is licensed under the terms of the Creative
Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).

Parallelization of CCSDS Hyperspectral Image Compression Using
OpenMP

Nur Ashiqin Nur Shaharim1, Tan Lit Chez1, Ahmad Zarif Zainul1 & Nor Rizuan
Mat Noor1*

1School of Electrical & Electronic Engineering, Universiti Sains Malaysia,
14300, Penang, Malaysia

*Corresponding author: nrmn@usm.my

Abstract: The Consultative Committee for Space Data Systems (CCSDS) has released the
Lossless Multispectral and Hyperspectral Image Compression standard (CCSDS-MHC,
also referred to as CCSDS-123) as the standard for lossless compressing the hyperspectral
images taken by spaceborne/airborne imagers. Currently, most implementations of the
CCSDS-MHC algorithm utilize a single processor thread for the compression process.
However, CCSDS-MHC has the potential to operate on multi-threaded systems with the
use of parallelization. The introduction of multi-threaded processing systems on space
satellites could further decrease the execution time of the system. In this research, the
aim is to design a parallelization algorithm for CCSDS-MHC using OpenMP. The first
step of the research is converting the CCSDS-MHC algorithm into a full programme in C/
C++ with both compression and decompression features. Next, the parallelizable section
of the algorithm is identified and coded using OpenMP. The algorithm is parallelized by
dividing the bands of hyperspectral images into several continuous chunks and running
them concurrently. The program is then tested in several systems with different numbers
of threads. The execution of the parallelized CCSDS-MHC algorithm shows significant
speedups for all the systems and hyperspectral images tested.

Keywords: Lossless hyperspectral image compression, CCSDS-123, OpenMP, Multicore
processor

1. INTRODUCTION

Remote sensing can be defined as the measurement of objects of interests’
properties on the Earth surface using data acquired from aircraft and satellites.
Remote sensing systems, especially satellite-based systems, provide many useful
applications due to their ability to provide a repetitive and consistent view of the
Earth. These applications include environmental assessment and monitoring,
natural resource exploration, military surveillance and topography mapping.1

Parallelization of CCSDS Hyperspectral Image 2

Due to the airborne and spaceborne nature of remote sensing systems,
the systems rely on the propagated signals, such as electromagnetic waves, for
information acquisition. The acquisition is done by specialized hyperspectral
sensors that produce a 3-D hyperspectral image that consists of a few hundred
spectral bands across the visible and infrared regions of the electromagnetic
spectrum in one run with high spectral resolution. This produces very large
hyperspectral images.

This also provides a constant challenge for spaceborne remote sensing
systems, which require the acquired image to be downloaded by operators. This is
because the satellites have limited onboard storage and downlink bandwidth.

To overcome this limitation, the hyperspectral image data undergo
compression just after the acquisition occurs. Lossless compression is preferred
for satellite-borne applications due to the need for post-processing at high fidelity
and resolution.2 As a response, the Consultative Committee for Space Data
Systems (CCSDS) has released the CCSDS 123.0-B-1 Lossless Multispectral and
Hyperspectral Image Compression (CCSDS-MHC) standard as the main standard
for lossless hyperspectral image compression.3

While the CCSDS-MHC algorithm provides state-of-the-art compression
performance in low-complexity domains, there is always some need to improve
various aspects of performance, such as execution time.4 One solution is to undergo
parallelization.

Parallelization involves dividing a programme into several parts that can
be solved at the same time with the same result. There is increasing interest in
introducing multicore processors for next-generation satellites that could make use
of parallelization for various tasks on satellites.5

To apply parallelization in the CCSDS-MHC algorithm, APIs such as
OpenMP can be used. OpenMP consists of a set of compiler directives and a library
of support functions in C/C++ for programme parallelization. By finding the right
section of the CCSDS-MHC algorithm to be parallelized, the execution time of the
algorithm can be greatly decreased.

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 3

2. ALGORITHM OVERVIEW

The CCSDS-MHC algorithm is a variation of the fast lossless (FL) compression
algorithm that uses 3D compression techniques.6 In the algorithm, only the
compression part is specified and standardized.3 Nevertheless, both the compression
and decompression parts of the algorithm will be introduced.

Fig. 1 shows the components of the compressor. The compressor of the
CCSDS-MHC algorithm consists of two parts: the predictor and encoder. The
predictor predicts the value of each image sample based on the values of a nearby
sample in a small 3D neighborhood. The main difference between the predicted
and actual sample values, or prediction residual, is the output of the predictor.

Figure 1: Compressor Schematic

Fig. 2 shows the flowchart of the predictor process based on steps specified
by the standard.3 The encoder then encodes the mapped prediction residuals based
on a statistical method known as the sample-adaptive entropy-coding approach.
This forms sequences of data bits that consist of a header followed by the body.
The header contains the compression parameters of the process, while the body
contains codewords that are coded as mapped prediction residuals. The lengths of
codewords vary according to the occurrence of the residual’s value. A value with
a higher occurrence will have shorter codewords. The data bits are then written to
an external file bit by bit and become the compressed image.

Parallelization of CCSDS Hyperspectral Image 4

Figure 2: Flowchart of the Prediction Process

The decompressor is the inverse of the compressor. Fig. 3 shows the
components of the decompressor. Similarly, the decompressor also consists of
two parts: a decoder and an inverse predictor. Both parts are the direct inverse
of the compressor’s encoder and predictor, respectively. The decoder converts
codewords back into mapped prediction residuals, while the inverse predictor
converts the residuals back to the original image sample value. Both functions are
similar to their counterparts, as the function still uses the same prediction method
and statistical method, albeit with slightly different formulas for some parts of the
calculations.

No

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 5

Figure 3: Decompressor Schematic

3. PREVIOUS WORKS ON CCSDS-MHC PARALLELIZATION

Several literature reviews of previous works on CCSDS-MHC parallelization have
been conducted to further understand the method of parallelization. A summary of
these works is as follows.

Hopson et al. analyse the CCSDS-MHC algorithm and identify the part
where parallelization can be applied with the usage of multicore central processing
unit (CPU) architectures.7 In the paper, OpenMP is used for parallelization for
a fixed platform (desktop) and mobile platform (laptop). The parallelization
approach was used to buffer the data whenever there is a dependency on the data.
This prevents the situation where one parallel execution thread needs to wait for
data since the algorithm stage only begins when all the data required are computed.
In fixed platforms, it was reported that parallelization can be efficiently done during
the stages involving input formatting, data encoding and data packing. However,
for the predictor stage, there was the need for a very large buffer, and it was not
feasible for the parallelization process. However, under mobile platforms using
Mobile OpenMP, the introduction of a buffer was not required. Instead, the image
segmentation method is used. The input image was split into smaller parts, and
each part underwent compression in a serial manner, albeit in different cores of the
processor. The execution time was significantly faster.

Davidson and Bridges used CUDA, another parallel computing API,
to perform CCSDS-MHC compression in GPU.4 The team used a multispectral
image as an input, which contains a smaller number of bands (less than 10)
compared to hyperspectral images. The image was segmented into individual
tiles and compressed individually. Then, the team modified the CUDA programs
to allow them to compress multiple tiles within a single thread block. With this
implementation, a speed-up of 2.41 times was achieved. However, the team also
concluded that this method was not so convincing when hyperspectral images are
used as input.

Figure 2: Flowchart of the Prediction Process

The decompressor is the inverse of the compressor. Fig. 3 shows the
components of the decompressor. Similarly, the decompressor also consists of
two parts: a decoder and an inverse predictor. Both parts are the direct inverse
of the compressor’s encoder and predictor, respectively. The decoder converts
codewords back into mapped prediction residuals, while the inverse predictor
converts the residuals back to the original image sample value. Both functions are
similar to their counterparts, as the function still uses the same prediction method
and statistical method, albeit with slightly different formulas for some parts of the
calculations.

No

Parallelization of CCSDS Hyperspectral Image 6

Schwartz and Pinho used an embedded multicore platform to test several
common image compression algorithms, including CCSDS-MHC.8 Input images
were segmented into tiles and compressed individually. In this study, the team tried
to find the effect of the number of images segmented on the execution time of the
algorithms running in parallel. The team revealed that while separating the image
into multiple tiles certainly makes the algorithms run faster. The tiles splitting
can also increases the execution time compared to a low number of tiles. This is
because the platform needs to expend time managing many tasks.

Olaru and Craus suggested an effective parallelization scheme for
CCSDS-MHC.9 The 3D hyperspectral image was first decomposed into relatively
independent blocks. These blocks were then distributed by a data manager into
all available processing cores. A scheme known as the master-worker design
paradigm was used. It consists of a single master node and multiple worker nodes.
The master node splits the work into workers and then becomes one of the workers.
However, it also coordinates the worker and collects the results from the worker.
When a worker node finishes its assigned work, it receives the next task. This
happens until all tasks are executed. One of the notable challenges arising in this
method is the need for the extra effort in finding a way to split up the mapped
prediction residuals into blocks for the encoding process.

Rodríguez et al. put spatial clustering (tiling), also known as segmented
images, into the CCSDS-MHC compressor on a commercially available System on
Programmable Chip (SoPC), ARTICo3 architecture. AVIRIS images with a spatial
size of 512512 are tiled spatially with various sizes of up to 88 pixels. However,
tiling is known to affect CR performance in comparison to the case without tiling,
but it is beneficial to fault tolerance. Each sub-image (called a segment) would
introduce its header, which makes the CR performance worse. Each segment is
processed independently in an accelerator to speed up performance. The system
managed to reach a throughput of 67 MSamples/s by using 16 accelerators.10

With the previous studies on improving the speed/throughput for the
CCSDS-MHC algorithm using various hardware, such as multicore CPUs and
GPUs, it is necessary to investigate the algorithm and optimise the flow so that
the parallelization is performed efficiently without any buffer memory. In the
algorithm, the local sum, σz, y, x (shown in Fig. 2), introduces data dependency that
requires buffer memory and prevents parallelization on that particular part of the
algorithm. This study overcomes this bottleneck to provide better parallelization
to the algorithm. It is expected that the enhancement made in this research can be
implemented on a hardware platform, such as a multicore processor, which is more
suitable to use on satellite platforms than a desktop computer or GPU. This study

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 7

focused on the optimum parameters for the CCSDS-MHC algorithm to produce
the best compression ratio (CR) without tiling for lossless hyperspectral images by
utilising the full prediction mode of the standard, as suggested by Sanchez, Auge.11

4. METHODOLOGY

The development of parallelized CCSDS-MHC involves the four steps described
in Fig. 4. Since the OpenMP is available in the C/C++ language, the CCSDS-MHC
algorithm first needs to be coded in C/C++ based on the Java implementation
available from the Group on Interactive Coding of Images (GICI).12 The algorithm
will then be tested to ensure it works correctly. Next, the algorithm is parallelised
by using OpenMP before testing the algorithm to assess its performance.

Start
Development of CCSDS-
MHC algorith with C++

language

Testing the CCSDS-
MHC algorithm written

in C++ language

Parallelization of
CCSDS-MHC algorithm

Testing of the
parallelized CCSDS-

MHC algorithm
End

Figure 4: Flowchart of the Development of the Parallelised CCSDS-MHC Algorithm

4.1 C/C++ Coding of the CCSDS-MHC Algorithm

The main objective of this research was to create a parallel version of the CCSDS-
MHC algorithm, therefore the algorithm was simplified considerably. First, in
the original CCSDS-MHC algorithm, there are choices for the user to specify the
method of calculating local sums, the prediction mode and the type of encoding
approach. However, in this work, these choices are restricted to the neighbour-
oriented method, full prediction mode and sample-adaptive entropy coding
approach fixed throughout the research. These configurations are chosen for the
best lossless CR performance.3 Second, each user-defined parameter throughout
the CCSDS-MHC algorithm is fixed to an optimum value suggested by Sanchez,
Auge.11 Since the objective of this research is to evaluate the CCSDS-MHC
algorithm in terms of execution time, these parameters are fixed to an optimum
value so that the best CR can be obtained. The suggested parameters are listed in
Table I below.

Parallelization of CCSDS Hyperspectral Image 8

Table I: Parameters Suggested for the CCSDS-MHC Algorithm11

Parameter Alias Value
Previous bands, P NUMBER_PREDICTION_BANDS 15
Dynamic range, D DYNAMIC_RANGE 16
Output word size OUTPUT_WORD_SIZE 4
Predictor meta-data
flag

PREDICTOR_METADATA_FLAG False (0)

Coder meta-data
flag

ENTROPYCODER_METADATA_FLAG False (0)

Local sum LOCAL_SUM_MODE Neighbour
oriented mode (0)

Prediction mode PREDICTION_MODE Full prediction
mode (0)

Register size REGISTER_SIZE 32
Weight initialisation
method

WEIGHT_INITIALIZATION_METHOD Default (0)

Weight initialisation
table flag

WEIGHT_INITIALIZATION_TF False (0)

Weight component
resolution

WEIGHT_COMPONENT_RESOLUTION 13

Weight update
scaling exponent
change interval

WEIGHT_UPDATE_SECI 64

Weight update
scaling exponent
initial parameter

WEIGHT_UPDATE_SE -1

Weight update
scaling exponent

WEIGHT_UPDATE_SEFP 3

Adaptive encoder ENTROPY_CODER_TYPE Sample adaptive
encoder (0)

Unary length limit UNARY_LENGTH_LIMIT 16
Rescaling counter
size

RESCALING_COUNTER_SIZE 6

Initial count
exponent

INITIAL_COUNT_EXPONENT 1

Initialisation
accumulator table
flag

ACCUMULATOR_INITIALIZATION_TF False (0)

Accumulator
initialisation
constant

ACCUMULATOR_INITIALIZATION_
CONSTANT

5

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 9

Both the compression and decompression parts of the algorithm are coded
in C/C++ in this research. This provides an easy way to test the validity of the
coded algorithm by joining both parts together, which makes the output of the
compressor the input of the decompressor. The correct algorithm will make its
original image (input of the compressor) and its decompressed image (output
of the decompressor) have the same value, pixel by pixel since the algorithm is
lossless. The act of joining each part requires sharing an image array that consists
of codewords. This requires additional care to eliminate the leading zeros problem
of the codewords, where different codewords will have the same value when
converted into integers. For example, codewords ‘01’ and ‘001’ will have the same
values.

4.2 Parallelization of the CCSDS-MHCc Compression Algorithm

In this research, only the compression part of the CCSDS-MHC algorithm will
be parallelised. The first step of the parallelization is to identify the parts of the
algorithm that are parallelizable. This can be done by drawing a data dependence
graph for the algorithm, as shown in Fig. 5.

In Fig. 5, each band of the image has a large potential to be parallelized.
The compression process for one band does not depend on the compression
processes of another band. In the original algorithm, the compression process starts
from the first band and continues to the last band, one at a time. This shows that
the algorithm exhibits data parallelism for each band. Nevertheless, there is one
data dependence present in the algorithm: the process of calculating the local sum,
which involves the generation of a prediction neighbourhood. The generation of a
prediction neighbourhood requires all the sample values of the current and a certain
number of previous bands. However, since all pixel values of all bands are already
obtained when the image is loaded, this problem can be solved by requesting the
values of the involved bands required directly from the loaded image at the start
of compression for every core, as opposed to the original algorithm, where band
shifting is conducted.

The parallelization of the algorithm was performed using the OpenMP’s
parallel for schedule directive. An ordinary parallel for a directive, which is common
for coding data parallelism, is not used since the iterations are conducted by a
random processor, and this requires the sample value requested for neighbourhood
generation to be conducted for every band, which is slower compared to the band
shifting. Under the parallel for schedule directive, a contiguous range of iterations
called chunks is assigned to each processor. For example, when compressing
8-band images under a system with two processors, a processor will compress

Parallelization of CCSDS Hyperspectral Image 10

bands 0 to 3 and another processor will compress bands 4 to 7. This enables the
sample value requesting method to run only one time, followed by a band shifting
method for subsequent bands, which saves a lot of time.

Load image

Get samples of
band z

Compression of band z
Calculate local sum

Calculate local
difference

Calculate local
difference vector

Calculate predicted
local difference

Calculate predicted
sample

Calculate mapped
predictor residual

Calculate codewords Get counter and
accumulator

Update counter
and accumulator

Statistic
init ial ization

Update
weight vector

Get weight
vector

Weight
init ial ization

Compression of
band z+Pz

*

Get samples
of band z+Pz

*… … … … … …

Compression of
last band

Get samples
of las t band

Write codewords
to file

Compression of
band z–1

Get samples
of band z–1

Compression of
band z–Pz

*

Get samples
of band z–Pz

*

Compression of
band 0

Get samples
of band 0 ...

Figure 5: Data dependence graph of the CCSDS-MHC compression algorithm

4.3 Testing Images and Environment

Four Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images, consisting
of 224 spectral bands, and four Hyperion images were used for testing purposes.13,

14 All the AVIRIS and Hyperion images were cropped from the top-left pixel to
form a 512512 and 256256 spatial size, respectively. Only 196 spectral bands,
which were classified as unique and calibrated by Thenkabail et al., were extracted
and used for the Hyperion images.15 The images are listed in Table II.

Table II: AVIRIS and Hyperion Test Images

Dataset Hyperspectral Image (Abbrev.) Image Size (RowColumnBand)

AVIRIS

Cuprite Scene 1 (Cuprite1)

512512224
Jasper Ridge Scene 2 (Jasper2)

Low Latitude Scene 1 (Low1)

Lunar Lake Scene 2 (Lunar2)

Hyperion

EO1H0120312001129111P1_PF1_01 (Boston)

256256196
EO1H0140362001127110PP_AGS_01 (Edenton)

EO1H0090112001140111PP_PF1_01 (Greenland)

EO1H0150332001134111P1_AGS_01 (Portobago)

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 11

Next, three computer systems with different numbers of processors
(threads) were used to evaluate the parallelised CSSDS-MHC algorithm. The
specifications of the systems are shown in Table III.

Table III: Computer System Used for Algorithm Evaluation

4-Thread System 8-Thread System 16-Thread System

OS Windows 10, 64-bit

CPU Type Intel Core i7-7500U
(mobile)

Intel Core i7-6700K
(desktop)

Intel Xeon E5-1660
v4 (server)

Clock Speed 2.7 GHz 4.00 GHz 3.2 GHz

CPU cores 2 4 8

CPU threads 4 threads 8 threads 16 threads

RAM 12GB 8 GB 16 GB

Storage Type HDD HDD HDD

L1 Cache 128 KB 256 KB 512 KB

L2 Cache 512 KB 1.0 MB 2.0 MB

L3 Cache 4.0 MB 8.0 MB 20.0 MB

4.4 Performance Indicator of the Parallelised Algorithm

The main performance indicator to assess the parallelised CCSDS-MHC algorithm
is execution time. The execution time of a CCSDS-MHC algorithm starts at the time
when the input image is done loading and ends when the last pixel is compressed
and its codewords are written to the file. The improvement in execution time
between sequential and parallel versions of the algorithm is quantified by speedup.
Speedup is defined as the ratio between sequential execution time and parallel
execution time.16

Another common performance indicator, the compression ratio, is also
calculated, although it is not important in this research. This is because the
compression ratio is always the same with the same image since all the user
parameters are fixed. The calculation is performed simply for reference purposes.

5. RESULTS AND DISCUSSION

5.1 Compression Ratio of the CCSDS-MHC Algorithm

Table IV shows the compression ratio (CR) of the images tested with the algorithm.

Parallelization of CCSDS Hyperspectral Image 12

Table IV: Compression Ratio of Tested Images

Hyperspectral Image Original Size (MBytes) Compressed Size (MBytes) CR

Cuprite1 117.44 35.81 3.28
Jasper2 36.05 3.26
Low1 39.29 2.99
Lunar2 36.13 3.25
Boston 25.69 12.83 2.00
Edenton 12.85 2.00
Greenland 10.93 2.35
Portobago 10.39 2.47

The table shows that there seems to be some correlation between the size
of the images and CR. Such a correlation implies that the compression of smaller
images results in less compression. A plausible explanation for this correlation
is that the average bit length of the codewords is nearly the same for most of the
images. This causes the rate of decrease of uncompressed image sizes to be faster
than the rate of decrease of compressed image sizes, in turn causing a decrease in
CR.

5.2 Speedup of the Parallelised CCSDS-MHC Algorithm

Table V shows the average execution times for each dataset in each implementation.
Table VI shows the speedups of all systems and the theoretical maximum speedup
according to the Amdahl’s Law, shown in (1), where is the number of processor
threads in a system and is the fraction of the operations in a computation that must
be performed sequentially. In this research, the value of is fixed to 0.1 (i.e., 10%)
through rough estimation from the data dependency in the local sum calculation.
The maximum speedup by the Amdahl’s Law is provided as a reference only.

Maximum speed up,

Table V: Average Execution Time (seconds) for Sequential and Parallel Implementation

Execution Time (seconds)

4-Thread System 8-Thread System 16-Thread System

Dataset Sequential Parallel Sequential Parallel Sequential Parallel

AVIRIS 40.40 17.99 26.64 10.66 21.55 4.02

Hyperion 5.86 3.53 2.58 1.58 3.99 0.57

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 13

Table VI: Speedup of Tested Datasets for Each System

Speedup

Dataset 4-Thread System 8-Thread System 16-Thread System

AVIRIS 2.25 2.50 5.37

Hyperion 1.66 1.63 7.06

 ψ with f = 0.1 3.08 4.71 6.40

Table VI shows that there is a significant speedup between the sequential
and parallel versions of the algorithm across the tested systems for each
hyperspectral dataset. For all the systems and datasets, a speedup value larger
than one shows that the parallel implementation is faster than its corresponding
sequential implementation. The 4-thread system and 8-thread system recorded
almost the same performance in terms of the speedup value, while the 16-thread
system had a far higher speedup value. Even though there was an almost identical
speedup value between the 4- and 8-thread systems, the execution time (Table V)
still favoured the 8-thread system due to differences in architecture (the 4-thread
system was mobile and the 8-thread system was desktop), higher clock speed and
bigger cache sizes. The larger RAM size in the 4-thread system in comparison to
the 8-thread system does not affect the results. For the 16-thread system, which
is a server-grade computing platform, similar trends have been observed, except
for the processor’s clock speed, which is slightly lower than that of the 8-thread
system.

In reference to the maximum speedup, ψ by Amdahl’s Law, the differences
between the measured results and the theoretical speedup are because the systems
used in this research have different specifications, such as processor’s thread
count, cache sizes, processor speeds and architectures, as well as RAM sizes.
The processor’s thread count is the main factor to get the best execution time (in
addition to the other factors, such as cache size, clock speed and RAM size), due to
the parallelization of the algorithm that has been performed based on the available
processor’s thread, as explained before. The CR from all systems is similar, as
shown previously in Table IV.

When comparing the datasets, Hyperion can be executed faster than
AVIRIS (Table V), mainly due to the smaller size (both spatially and spectrally)
in the former dataset. This can also be observed in Table VI in terms of speedup.
Moreover, the speedup for the Hyperion dataset in the 16-thread system (7.06) is
larger than its theoretical speedup (6.40). Since OpenMP automatically handles the
parallelization process between the processor thread, the value of f = 0.1 might not
be suitable for the system and causes the difference.

Parallelization of CCSDS Hyperspectral Image 14

6. CONCLUSION AND FUTURE WORK

In conclusion, a hyperspectral image compression system based on the CCSDS-
MHC algorithm with the support of parallel processing has been successfully
designed and developed. The algorithm is divided into chunks of bands and runs
concurrently. This parallelization is done using OpenMP’s parallel for schedule
directives. The parallelized algorithm is indeed run at a higher speed compared
to its sequential counterparts, with a speedup of about 1.6 times to 7.0 times,
depending on the number of threads in the system running the algorithm and
the type of images. The AVIRIS dataset can be compressed from around 4 to
18 seconds in the parallel implementation, compared to 21 to 40 seconds in the
sequential counterparts. The Hyperion dataset, which has a smaller size, can be
compressed from under one second to around four seconds in parallel compared to
four to six seconds in the sequential implementation. Unlike the other studies that
focused on tiling, this study focuses on the full spatial resolution of the images,
which produces the best CR performance. This study also uses the full prediction
mode to achieve the same objective.

In future research, it would be worthwhile to explore the impact of the
parallelized algorithm in terms of compression ratio and execution time when
user-defined parameters are changed. The implementation of hardware (multicore
processors such as DSP and FPGA) is expected to produce a faster execution.

7. ACKNOWLEDGEMENTS

This work was supported by USM Short Term Grant 304/PELECT/6315003.

8. REFERENCES

1. Schowengerdt, R.A., Remote Sensing: Models and Methods for Image
Processing. 3rd. ed. 2012: Elsevier Inc. 515.

2. Lopez, G., E. Napoli, and A.G.M. Strollo. FPGA implementation of the
CCSDS-123.0-B-1 lossless Hyperspectral Image compression algorithm
prediction stage. in 2015 IEEE 6th Latin American Symposium on Circuits
& Systems (LASCAS). 2015. DOI: 10.1109/LASCAS.2015.7250438.

3. CCSDS, Lossless Multispectral & Hyperspectral Image Compression -
Recommended Standard (CCSDS 123.0-B-1). 2012, Washington DC,
USA: CCSDS Secretariat, NASA. 52.

Journal of Engineering Science, Vol. 18(1), 1–16, 2022 15

4. Davidson, R.L. and C.P. Bridges. GPU accelerated multispectral EO
imagery optimised CCSDS-123 lossless compression implementation.
in 2017 IEEE Aerospace Conference. 2017. DOI: 10.1109/
AERO.2017.7943817.

5. Andersson, J., J. Gaisler, and R. Weigand. Next Generation MultiPurpose
Microprocessor. in DASIA 2010 - Data Systems In Aerospace. 2010. DOI:
2010ESASP.682E...8A.

6. Matthew, K. Low-complexity adaptive lossless compression of
hyperspectral imagery. in Proc.SPIE. 2006. DOI: 10.1117/12.682624.

7. Hopson, B., et al. Real-time CCSDS Lossless Adaptive Hyperspectral
Image Compression on Parallel GPGPU & Multicore Processor Systems.
in NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
2012. 2012. Erlangen, Germany DOI: 10.1109/ahs.2012.6268637.

8. Schwartz, C. and M.d.S. Pinho, Remote-Sensing Image Compression Using
Embedded Multicore Platforms With Energy Consumption Measurement.
IEEE Geoscience and Remote Sensing Letters, 2015. 12(12): p. 2453-
2457 DOI: 10.1109/LGRS.2015.2484076.

9. Olaru, M. and M. Craus. Lossless multispectral and hyperspectral image
compression on multicore systems. in 2017 21st International Conference
on System Theory, Control and Computing (ICSTCC). 2017. DOI:
10.1109/ICSTCC.2017.8107030.

10. Rodríguez, A., et al., Scalable Hardware-Based On-Board Processing for
Run-Time Adaptive Lossless Hyperspectral Compression. IEEE Access,
2019. 7: p. 10644-10652 DOI: 10.1109/ACCESS.2019.2892308.

11. Sanchez, J.E., et al. Review and Implementation of the Emerging
CCSDS Recommended Standard for Multispectral and Hyperspectral
Lossless Image Coding. in 2011 First International Conference on Data
Compression, Communications and Processing. 2011. DOI: 10.1109/
CCP.2011.17.

12. GICI. Emporda Software. 2021 9 December 2021]; Available from: http://
gici.uab.es/GiciWebPage/downloads.php#emporda.

13. NASA-JPL. Ordering Free AVIRIS Standard Data Products. 2015 9
December 2021]; Available from: https://aviris.jpl.nasa.gov/data/free_
data.html.

14. EROS. USGS EROS Archive - Earth Observing One (EO-1) - Hyperion.
2019 9 December 2021]; Available from: https://www.usgs.gov/centers/
eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion.

https://aviris.jpl.nasa.gov/data/free_data.html
https://aviris.jpl.nasa.gov/data/free_data.html
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion

Parallelization of CCSDS Hyperspectral Image 16

15. Thenkabail, P.S., et al., Hyperion, IKONOS, ALI, and ETM+ sensors in
the study of African rainforests. Remote Sensing of Environment, 2004.
90(1): p. 23-43 DOI: https://doi.org/10.1016/j.rse.2003.11.018.

16. Asanovic, K., et al., A view of the parallel computing landscape. Commun.
ACM, 2009. 52(10): p. 56–67 DOI: 10.1145/1562764.1562783.

https://doi.org/10.1016/j.rse.2003.11.018

