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Abstract: Numerical analysis is presented for transient buoyancy-induced natural 
convection from discrete heating inside a two-dimensional rectangular enclosure filled 
with porous medium. The study has been made for Rayleigh numbers of 100, 1000 and 
10000 with an aspect ratio of 2. The left vertical wall is heated discretely to a constant 
high temperature and the right wall is cooled to a constant low temperature. The 
remaining two walls are adiabatic. The finite volume method is used to solve the 
dimensionless governing equations. The distribution of stream function was observed 
and temperature distributions are presented at different timelines and analysed. In 
addition, the present results were also compared with those of previous researchers for 
isothermal walls and was found to be in good agreement. 
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1. INTRODUCTION 
 

Buoyancy-driven fluid flow analysis in cavity that experiences 
convective heating or cooling at the surface are found in a wide variety of 
applications including lakes, geothermal reservoirs, underground water flows, 
solar collectors etc. An excellent introduction to the subject is given by Ostrach1 
with new developments in the area of natural convection heat transfer. 
Literatures concerning convective flow in porous media are abundant. 
Representative studies in this area may be found in recent books by Ingham and 
Pop,2 Bejan and Kraus3 and Nield and Bejan.4 
 
 The research studies quoted pertained to steady state analysis 
employing numerical method, whereas the heat transfer through a porous 
medium is transient in nature. The implementation of transient analysis in 
numerical method has urged the researches to investigate the heat and flow 
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pattern in the porous cavity. Weber5 obtained an analytical solution to the flow 
and heat transfer problem in the boundary layer regions of a porous enclosure 
using the Oseen linearisation procedure. Chan et al.6 and Bankwall7 have 
obtained numerical solution for the flow patterns and isotherms in a vertical 
enclosure at various instants of time. Later Singh and Misra8 investigated the 
unsteady two-dimensional free convective flow through a porous medium 
bound by infinite vertical plates. They considered the temperature of the plate is 
oscillating with time about a nonzero constant. However, Pop9 solved the 
problem of transient free convection in porous medium adjacent to a vertical 
semi-infinite flat plate with a steep increase in wall temperature and surface heat 
flux by an integral method. The paper proved that the boundary layer thickness 
grows continuously with time and approaches the steady state value 
asymptotically. Mehta and Sood10 used Karman-Pohlhausen integral method to 
study the problem of transient free convection flow about a non-isothermal 
vertical flat plate in a fluid saturated porous medium of variable permeability. 
But Saeid and Pop11 highlighted the analysis on transient free convection in a 
two-dimensional square cavity filled with porous medium using finite volume 
numerical method. The analysis showed that the average Nusselt number is 
undershoot during the transient period for higher Rayleigh number. 
 

From the literature review it is clear that most of the researchers 
employed numerical method to predict the behaviour of the porous medium. 
Their methods are well compared with the experimental results. Hence, the 
numerical methods become a foundation to researchers to justify the conformity 
of their predictions with the realistic situations. However, the study of transient 
natural convection in rectangular porous medium cavity with discrete heating is 
still lacking. Thus, finite volume method has been used in the present work to 
analyse the transient natural convection in porous medium induced by the 
discrete heating at different Rayleigh numbers. 
 
 
2.  EXPERIMENTAL 
 
2.1  Basic Equation 
 

A schematic diagram of a two-dimensional rectangular cavity is shown 
in Figure 1. It is assumed that the left vertical wall of the cavity is suddenly 
heated discretely at the middle to the constant temperature Th and the right 
vertical wall is suddenly cooled to the constant temperature Tc, where Th > Tc, 
by equal amount relative to an initial uniform temperature distribution, while 
the horizontal walls are maintained adiabatic as illustrated in Figure 1. 
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Figure 1: Schematic diagram of the physical system. 
 

In the porous medium, Darcy’s law is assumed to hold, and the fluid is 
assumed as a Boussinesq fluid. The viscous drag and inertia terms in the 
momentum equations are neglected, which are valid assumptions for low Darcy 
and particle Reynolds numbers. With these assumptions, the continuity, Darcy 
and energy equations for unsteady, two-dimensional flow in an isotropic and 
homogenous porous medium are: 
 

0=
∂
∂+

∂
∂

y

v

x

u
                                                                                                      (1) 

 










∂
∂+

∂
∂+

∂
∂−=

∂
∂+

∂
∂

y

u

x

u

x

P

y

u
v

x

u
u

2

2

2

21 ν
ρ

                                                        (2) 

 

Th = 0 
 
 
 
 
 
 
 
 
Hot 
wall 
Th = 0 
 
 
 
 
 
 
Th = 0 
 

 
 
 
 
 
 
 
 
Cold wall 
Tc = –0.5 

Adiabatic wall 



Transient Natural Convection                                                                                                           4 

 

)(
1

2

2

2

2

CTTg
y

v

x

v

y

P

y

v
v

x

v
u −+









∂
∂+

∂
∂+

∂
∂−=

∂
∂+

∂
∂ βν

ρ
                                (3) 










∂
∂+

∂
∂=

∂
∂+

∂
∂+

∂
∂

2

2

2

2

y

T

x

T

y

T
v

x

T
u

t

T ασ                                                          (4) 

 
With boundary conditions: 
 
u (i, 0, τ) = u (i, M, τ) = u (0, j, τ) = u (N, j, τ) = 0 
 
v (i, 0, τ) = v (i, M, τ) = v (0, j, τ) = v (N, j, τ) = 0 
 

0),,( =
∂
∂ τMi

y

T
,      0 < i < N 

 
0),,0( =τjT ,          0 < j < 30 

 

hTjT =),,0( τ ,         29 < j < 37 

 
0),,0( =τjT ,          36 < j < M 

 

cTjNT =),,( τ ,         0 < j < M 

 
Where i and j are the computational planes along x and y directions respectively 
and τ is the time in dimensionless form. N and M are the maximum grid number 
along i and j respectively. The velocity components u and v are the velocity in 
the x and y directions respectively; T denotes the temperature; ν and α are 
kinematics viscosity and thermal diffusivity respectively; g is gravitational 
acceleration; β is 2 (Th + Tc) P is the pressure, σ  is the density and t is the time; 
Th and Tc are the temperatures at hot bottom wall and cold vertical walls 
respectively; W and H are the cavity length and height respectively. The 
variables in equations 1 through 4 can be written in dimensionless forms as: 
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The fluid mation is displayed using the stream function ψ obtained from 
velocity components u and v. The relationship between stream function ψ and 
velocity components for two dimensional flows11 is: 
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Thus, by assuming the pressure difference is small and can be neglected, the 
governing equations above can be written in dimensionless forms as: 
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The initial and boundary conditions have been set as: 
 

0)0,,( =Ψ ji                      0)0,,( =jiθ  
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The dimensionless numbers, local Nusselt (Nu), average Nusselt (Nuave) and 
Rayleigh (Ra) and aspect ratio (Ar) are calculated from: 
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Where K is the permeability of the porous medium and ε is the void fraction 
which can be expressed as a function of bed porous and particle diameters as 
given by Nithiarasu et al.12: 
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2.2 Selection of Grid and Verification 
 

The governing equations (6 and 7) are solved using the finite volume 
method with a fully implicit scheme. The power law scheme is used to solve the 
convection and diffusion terms as described by Patankar.13 The domain consists 
of non-uniform grid points in both X and Y directions. Various numbers of 
grids have been tested in order to get a good compromise between the precision 
of the results in term of average Nusselt number (on the hot face). All tests have 
been made for case of Ar = 1 and allowed to reach the steady state conditions in 
order to be confident with the results. The grid size of 65 x 65 was chosen due 
to a 2% different with Baytas14 and also because it consumed less computing 
time. The resulting algebraic equations were solved by line by line iteration 
using Tri-Diagonal Matrix Algorithm (TDMA).13 The parameters of 
convergence are fixed to 10–4 for both temperature and stream function. The 
effect grid numbers on average Nusselt number in the present analysis is show 
in Table 1. 
 
 

Table 1: Effect of grid numbers on Nusselt number. 
 

No. of grids Average Nu 

45 × 45 
55 × 55 
65 × 65 
85 × 85 

3.143 
3.131 
3.123 
3.114 

 
In the present solution, the verification of average Nusselt number 

values for Ra =  100, 1000 and 1000 have been considered and compared with 
the results obtained from Saeid and Pop,11 Baytas14 and Bejan15 for isothermal 
temperature of both left and right walls at steady state condition. The top and 
bottom walls were set as adiabatic. These setting are used only for comparison 
purposes and also to validate the present results. The comparisons are shown in 
Table 2. The present results are found to be in good agreement with those of the 
previous workers. Therefore, these results provide great confidence to the 
accuracy of the present numerical model. 
 
 

Table 2: Comparison of average Nusselt number with previous workers for Ar = 1. 
 

Author Ra = 100 Ra = 1000 Ra = 10000 

Saeid and Pop11 

Baytas14 

Bejan15 

Present result 

3.002 
3.160 
4.200 
3.123 

13.726 
14.060 
15.800 
13.964 

43.953 
48.330 
50.800 
48.197 
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3. RESULTS AND DISCUSSION 
  

The isotherms and streamlines at different time steps ranging from τ = 
0.0025 to τ = 0.08 are shown in Figure 2 for Ra = 1000. It can be seen that early 
in the transient, the isotherms are nearly parallel indicating conduction heat 
transfer near the right wall but at the left wall the fluid starts to rise up near the 
hot discrete wall (left). The fluid has fallen downward near the cooled right 
wall. Double vortices flow regions are observed from the streamline contours 
where a very weak secondary vortex developed close to the upper part of the hot 
wall and a primary circulation spinning the fluid towards the centre of the 
enclosure but is skewed due to the development of the secondary vortex [Fig. 
2(a)]. Shortly after that, the fluid travels across the upper (or lower) half of the 
enclosure [Fig. 2(b)] and the secondary vortex grows bigger. The streamlines 
indicate an elongation of the re-circulation region of the flow along with a 
transition to the middle of the enclosure [Fig. 2(b)].  
 

With increase of time (τ = 0.01), the majority of fluid is rising up or 
falling down near the hot wall and near the cooled wall respectively [Fig. 2(c)] 
and the secondary vortex continuously growing. At the upper part of hot wall, 
the fluid temperature is observed higher compared to wall temperature, hence 
the local Nusselt number has negative magnitude which illustrates the heat is 
transferred into the wall [Fig. 3(b)].  
 

Further, after a short time (τ = 0.02), the primary vortex has been 
extended throughout the cavity and convection has became more important 
[Fig. 2(d)]. For τ > 0.04 the flow is then going to attain the steady-state regime 
[Fig. 2(e)], similarly for τ = 0.08 [Fig. 2(f)]. The isotherms and streamlines at τ 
= 0.08 are presented in Figure 2(f), the development of the velocity and thermal 
boundary layers on the vertical walls of the cavity can be clearly observed from 
these figures that both vortices continuously grow to the steady-state thermal 
boundary layers. The development of the velocity and thermal boundary layers 
for Ra = 100 and 10000 are similar to those shown in Figure 2. The difference is 
that for low Rayleigh number condition the convection currents will be weaker 
which leads to a slower growth of boundary layer compared to that for high 
Rayleigh number condition. The stream lines and the isotherms for Ra = 100 
and 10000 are not shown for brevity. 
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(a) τ = 0.0025 

 

 

 

 
(b) τ = 0.005 

 
Figure 2: Isotherms (left) and streamlines (right) for Ra = 1000; (a) τ = 0.0025, 

(b) τ = 0.005, (c) τ = 0.01, (d) τ = 0.02, (e) τ = 0.04 and (f) τ = 0.08 
(continued on next page). 
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(c) τ = 0.01 

 

 

 

 
(d) τ = 0.02 

 
Figure 2: (continued) 
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(e) τ = 0.04 
 
 

  

 

 
(f) τ = 0.08 

 

 
Figure 2: (continued) 

 
The variation of unsteady local Nusselt number with time along the hot 

wall of the cavity at different positions Y is presented in Figure 3 for Ra = 
100–10000. It can be seen that immediately after the process of heating starts 
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the value of the local Nusselt number increases drastically and this 
characteristic is observed in any heating system. Then, at small positions (Y = 
0.0957), the local Nusselt number decreases for a short time followed by a 
constant value and then increases to reach the steady state condition. Figure 
3(c) shows that this phenomenon will occur for the upper half also (Y = 0.5) 
for Ra = 1000. However, for Y = 0.859 and Ra = 100, 1000 and 10000 the local 
Nusselt number with negative magnitude decreases continuously with increase 
of time until it reaches its steady-state value. At this position, the results 
illustrate that the heat is transferred into the wall (left) since the fluid 
temperature is higher than the wall temperature.  
 

Figure 4 shows that variation of the transient local Nusselt number is 
reflected on the average Nusselt number which is defined in equation 8. The 
results show the variation of the average Nusselt number with the 
dimensionless time for different Rayleigh numbers. The average Nusselt 
number showed a sudden increase during the transient period followed by a 
constant steady state value for Ra = 100–10000. It is also observed that the 
time required to reach the steady state (Nu becomes constant) is about τ = 0.04 
for all Rayleigh numbers as shown in Figures 3 and 4. 
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Figure 3: Variation of transient local Nusselt number with τ at different Rayleigh 
numbers: (a) Ra = 100, (b) Ra = 1000 and (c) Ra = 10000 (continued on 
next page). 
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Figure 3: (continued) 
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Figure 4: Variation of transient average Nusselt number with τ at different Rayleigh 
numbers. 

 
 
4. CONCLUSION 
 

The transient free convection in a two-dimensional rectangular cavity 
filled with a porous medium is considered in this paper. The flow is driven by 
considering the case when one of the vertical walls of the cavity is suddenly 
heated at a discrete location and the other vertical wall is suddenly cooled, 
while the horizontal walls are kept adiabatic. The non-dimensional forms of the 
continuity, Darcy and energy equations are solved numerically. The power-law 
scheme is used for the convection-diffusion formulation in the non-uniform 
grid in both horizontal and vertical directions. It is observed that during the 
transient period the average Nusselt number increases with time for Rayleigh 
numbers ranging from 100 to 10000. The results also show that the steady state 
is reached at τ = 0.04s for all Rayleigh numbers. 
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