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Abstract: Based on density functional theory (DFT) calculations, the electronic and magnetic properties of Co2YGe Heusler compounds (Y = Sc, Ti, V, Cr, Mn and Fe) were investigated. The density of states (DOS) and band structures were studied to understand their electronic properties. Of the investigated systems, Co2CrGe and Co2MnGe exhibited 100% spin polarisation at the EF. Co2CrGe was the most stable half-metallic ferromagnet (HMF) with a 0.24 eV energy gap at the Fermi level in the spin down channel. The total magnetic moment also increased as Y went from Sc to Fe, i.e., with increasing valence electrons. The calculated magnetic moments for Co2CrGe and Co2MnGe were 3.999 µB and 5.00 µB, respectively. Based on the calculated results, the HMF character was predicted for Co2CrGe and Co2MnGe.
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1.      INTRODUCTION

Heusler alloys are ternary intermetallic compounds with an X2YZ composition, where X and Y are transition elements (Ni, Co, Fe, Mn, Cr, Ti and V, etc.) and Z is III, IV or V group elements (Al, Ga, Ge, As, Sn and In, etc.). One promising class of materials is half-metallic ferromagnets (HMFs), i.e., compounds with only one spin channel presenting a gap at the Fermi level, while the other has a metallic character, which leads to 100% carrier spin polarisation at EF.1

Half-metallic materials have attracted much attention2 due to their prospective applications in spintronics.3 The calculated electronic and magnetic properties of Co2MnAl4 and Co2CrSi5 based on local spin density approximation (LSDA) indicates a half-metallic behaviour in the ground state. Miura et al.6 found some Co-based Heusler alloys exhibit over 70% spin polarisation. These materials include Co2CrAl (99.9%), Co2CrSi (100%), Co2CrGa (93.2%), Co2CrGe (99.8%), Co2MnSi (100%) and Co2FeAl (86.5%), etc.

In this paper, the ground state structural properties of Co2YGe were studied via the full potential linearised augmented plane wave (FP-LAPW) method within the generalised gradient approximation (GGA).7 Numerous Co-based full Heusler compounds, such as Co2TiAl,8 Co2Val,9 Co2MnGe Co2MnSn,10 Co2CrAl, Co2CrGa,11 Co2MnSi,12 Co2CrSb13 and Co2CrAs14, exhibit half metallic behaviour based on previous first principles calculations and are predicted to work well as spintronic devices. The electronic structure calculations play an important role in determining the HMF properties. The calculated density of states (DOS) and band structures indicate the electronic properties. The electronic calculations were based on the LSDA. An attempt was made to calculate the DOS and band structure for compounds similar to those discussed above, such as Co2ScGe, Co2TiGe, Co2VGe and Co2FeGe, with the expectation that they will exhibit half-metallic ferromagnetism and be applicable for spintronic devices.

2.      COMPUTATIONAL

A computational code (WIEN2K)15 based on the FP-LAPW method was used to calculate the structure of Co2YGe. Nonspherical contributions to the charge density and potential of up to lmax = 10 (the highest value of angular momentum functions) within the MT spheres were considered. The cut-off parameter was RMT × Kmax = 7, where Kmax is the maximum reciprocal lattice vector in the plane wave expansion, and RMT is the smallest radius for all atomic spheres. RMT × Kmax = 7 because the accuracy of the plane wave basis set was determined from Kmax.

The product RMT × Kmax = 7 is a better judge of the calculation accuracy. As RMT increases, the closest a plane wave can come to a nucleus moves farther out. The part of the wave function no longer described by a plane wave displays a steep behaviour. Fewer plane waves are needed to describe the remaining, smoother parts of the wave function. The Kmax can then be reduced, and a good rule is that RMT × Kmax = 7 should be constant to maintain accuracy. Reducing Kmax means reducing the matrix size because matrix diagonalisation is challenging, i.e., using a larger RMT reduces the computation time. However, the RMT cannot be too large, because the spherical harmonics are ill-suited to describe the wave functions in regions far from the nuclei.


Spherical harmonics can have 2 lmax nodes within the Muffin Tin sphere. To match these nodes, the shortest period for a plane wave should be 2 π/Kmax. The cut off for the plane waves (Kmax) and angular function (lmax) are comparable in quality when they have an identical number of nodes per unit length. A finite value of lmax means each plane wave matches at the sphere boundaries.16 The charge density and potential expand in the interstitial region as a Fourier series with wave vectors of up to Gmax = 12 a.u−1. The irreducible part of the Brillouin zone used 286 k-points. The Muffin Tin sphere radii (RMT) for each atom are tabulated in Table 1.

Table 1: Muffin Tin radius (RMT).
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2.1      Crystal Structure

Heusler alloys17 are intermetallic compounds with chemical formulas of X2YZ (X = Co; Y = Sc, Ti, V, Cr, Mn and Fe; and Z = Ge). The full Heusler structure consists of four penetrating fcc sublattices with atoms at the X1(1/4,1/4,1/4), X2(3/4,3/4,3/4), Y(1/2,1/2,1/2) and Z(0,0,0) positions, which yields an L21 crystal structure with the Fm-3-m space group.
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Figure 1:   An outline of the Co2YGe structure: Co (red - R), Y (yellow - Y) and Ge (blue - B) atoms.




3.      RESULTS AND DISCUSSIONS

3.1      Structural Optimisation for Co2YGe

The structural and electronic properties of the Co2YGe Heusler compounds were systemically calculated in this work. The electronic properties were studied to understand the effect different atoms and valence electron concentrations had on the magnetic properties and particularly the band gap in the minority states. The structural and electronic properties were calculated using GGA and LSDA, respectively. The optimised lattice constant, isothermal bulk modulus and its pressure derivative were calculated by fitting the total energy to the Murnaghan equation of state.18

The optimised lattice parameters were slightly higher than the experimental lattice parameters, with a change of Δ(ao). This result confirmed the ferromagnetic configuration had less energy than the non-spin-polarised configuration for the Co2YGe systems (Table 2). The structural optimisation results are shown in Figure 1. The optimised lattice parameters and bulk modulus are detailed in Table 2.

Table 2: Lattice parameters, bulk modulus and equilibrium energy.



	Compound
	Lattice Constants ao (Å)

	Bulk Modulus, B (GPa)
	Equilibrium Energy (Ry)




	Previous

	Calculated

	Δ(ao)




	Co2ScGe
	5.95319

	5.978

	0.025

	109.969

	−11300.629




	Co2TiGe
	5.84219

	5.867

	0.025

	200.378

	−11479.814




	Co2VGe
	5.76619

	5.792

	0.026

	202.158

	−11670.736




	Co2CrGe
	5.74019

	5.770

	0.030

	250.438

	−11873.835




	Co2MnGe
	5.73819

	5.749

	0.011

	219.479

	−12089.405




	Co2FeGe
	5.73919

	5.758

	0.019

	162.677

	−12317.674





3.2      Spin Polarisation and HMF

The electron spin polarisation (P) at Fermi energy (EF) of a material is defined by the Equation 1:20
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Figure 2:   Optimisation of the lattice parameters.




where ρ ↑ (EF) and ρ ↓ (EF) are the spin dependent DOS at the EF. The ↑ and ↓ symbols assign the majority and the minority states, respectively. P vanishes for paramagnetic or anti-ferromagnetic materials even below the magnetic transition temperature. Ferromagnetic materials below the Curie temperature have finite values.21 Electrons at the EF are fully spin polarised (P = 100%) when ρ ↑ (EF) or ρ ↓ (EF) equals zero.

The present work studies the properties of Co2YGe compounds (Y = Sc, Ti, V, Cr, Mn and Fe). Of these compounds, only Co2CrGe and Co2MnGe exhibited 100% spin polarisation at the EF (Table 3). According to the results, compounds containing Cr are interesting because they show large DOS at the EF with ρ ↑ (EF) = = 2.13 states/eV (Table 3). This large value results from the EF cutting through strongly localised states in Cr-d, whereas the contributions of the Co-d states to ρ ↑ (EF) are small as illustrated in Figure 3(d). However, ρ ↓ (EF) = 0.00 states/eV for both Co and Cr atoms; therefore, Co2CrGe is a half-metal with 100% spin polarisation at EF. The same explanation applies to Co2MnGe. Figure 3 summarises the DOS results calculated using the LSDA.

For the low magnetic moment compounds shown in Figure 3, the EF is close to the minority conduction states. The gap size increases with movement from Sc to V, whereas the gap for the high magnetic moment compounds shown in Figure 4 decreases from Cr to Fe (Table 3). The Cr-d and Mn-d states exhibit some exchange splitting, which is responsible for creating high magnetic moments at the Cr and Mn sites [Figure 4 (d and e)]. The contribution from the majority states at the Fermi energy increases from Sc to Cr. However, from Cr to Fe the majority state contribution at the Fermi energy decreases (Figure 3 and 4).

Table 3: Energy gap and spin polarisation.
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For (Y = Cr and Mn), the Fermi energy (EF) lies in the middle of the gap for the minority-spin states, which provides the half-metallic character to the investigated compounds [Figure 4 (d and e)]. According to Figure 5 (d and e), the indirect band gaps along the Γ-X symmetry for Co2CrGe and Co2MnGe were 0.24 eV and 0.22 eV, respectively. However, Co2YGe Heusler alloys (Y = Sc, Ti, V and Fe) are not the perfect half-metals because the EF falls into a rising peak in the minority-spin states.

The gap formation in the half-metal Co2MnSi compounds was discussed by Galanakis et al.22 and was due to the strong hybridisation between the Co-d and Y-d states combined with the large local magnetic moments and sizeable separation between the d-like band centres. A strong hybridisation feature (a small gap for Y = Ti and V with no gap for Y = Sc and Fe) was found to already occur in the DOS with the EF cutting through a peak, which indicates an instability. For HMF Co2YGe compounds (Y = Cr and Mn), the EF is located in the gap of the minority-spin DOS as long as there are few states to fill and the gap is large.
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Figure 3:   Total DOS for low magnetic moment compounds.
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Figure 4:   Total DOS for high magnetic moment compounds.



3.3      Magnetic Properties Calculated via the LSDA

For the compounds being investigated, all information on the partial, total and previously calculated magnetic moments is summarised in Table 4. This table shows the calculated total magnetic moments are exactly integer values for Co2CrGe and Co2MnGe as expected for half-metallic systems. For several compounds such as Co2TiGe and Co2VGe, the calculated total magnetic moments appear to be lower than the previous results. For small magnetic moment compounds, Co2YGe (Y = Sc, Ti, V), the Co atoms contribute the most to the moment relative to compounds with higher magnetic moments, Co2YGe (Y = Cr, Mn, Fe), (Table 4).

The local magnetic moment increased linearly from Y = Ti to Y = Mn; however, the local magnetic moment was smaller for Fe than Mn, which destroyed the linear trend (Table 4). These results are consistent with the DFT study of Co2FeSi by Wurmehl et al.23 Additionally, the EF was not in the gap of the minority-spin DOS when calculated with the LSDA. While the magnetic moment for the Co atoms in Co2YGe remained nearly constant, i.e., approximately 1 µB, it diverges for (Y = Sc and Fe) (Table 4).

The total magnetic moments were exact integers for the true half-metal compounds. As shown in Table 4, the Ge atoms carry a negligible magnetic moment and do not contribute much to the overall moment. Notably, the partial moment for the Ge atoms was anti-parallel to the Co and Y moments for the HMF systems. The partial magnetic moments for the Ge atoms in the HMF compounds, Co2CrGe and Co2MnGe, were −0.0296 µB and −0.0319 µB, respectively. These values emerged from the transition metal hybridisation and were caused by the electron wave functions overlapping as reported by Kandpal et al.21
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Figure 5:   Band structure for Co2YGe.




Table 4: Total and partial magnetic moments.



	Compound
	Magnetic moment, µB (LSDA)




	Previous

	Calculated




	Co

	Y

	Ge

	Total




	Co2ScGe
	1.0219

	0.572

	−0.077

	0.0009

	1.012




	Co2TiGe
	1.9919

	0.951

	−0.016

	0.026

	1.889




	
	1.9721

	
	
	
	



	Co2VGe
	2.8219

	0.889

	0.6324

	0.007

	2.437




	Co2CrGe
	4.0019

	0.932

	2.122

	−0.030

	3.999




	Co2MnGe
	5.0019

	0.991

	3.048

	−0.032

	5.000




	Co2FeGe
	5.4819

	1.320

	2.777

	0.004

	5.391




	
	5.7021

	
	
	
	




4.      CONCLUSION

Total-energy calculations were used to find stable magnetic configurations and optimised the lattice constants. The DOS, magnetic moments and band structures for Co2YGe (Y = Sc, Ti, V, Cr, Mn and Fe) compounds were calculated via the FP-LAPW method. The calculated results agreed well with previously calculated results. For high magnetic moment compounds, lighter transition elements, going from Fe to Cr, and fewer valence electrons yields wider gaps and more stable half-metallicities; therefore, Co2CrGe was the most stable HMF.

For the HMF compounds (Co2CrGe and Co2MnGe), the partial moment of Ge is antiparallel to the Co and Y atoms. The possibility that half-metallicity appears in the full Heusler Co2YGe (Y = Sc, Ti, V, Cr, Mn and Fe) compounds was investigated. Of these compounds, Co2CrGe and Co2MnGe exhibited half-metallic ferromagnetism with 100% spin polarisation at EF. The existence of an energy gap in the minority spins (DOS and band structure) for both systems (Co2CrGe and Co2MnGe) indicates their potential as HMFs. The calculated magnetic moments for Co2CrGe and Co2MnGe being 3.999 µB and 5.00 µB, respectively, also evidenced this potential. The calculated results qualitatively agreed with an integral value, which supports the compounds being HMF.

The Fermi energy being located in the minority channel gap for the investigated system makes them half-metal ferromagnets. The Co-based Co2YGe (Y is a transition element) Heusler alloys are the best candidates for spintronics applications.
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