ANTHROPOTECHNOLOGICAL PERSPECTIVE IN ADOPTING VIRTUAL REALITY TRAINING TOOL TECHNOLOGY TRANSFER IN MALAYSIA AEROSPACE INDUSTRY

Noor Ashikin Said1 and Zaharul Abdullah2*

¹MPU Department, Xiamen University Malaysia, Selangor, Malaysia ²School of Distance Education, Universiti Sains Malaysia, Pulau Pinang, Malaysia

*Corresponding author: zaharul@usm.my

Published online: 31 October 2025

To cite this article: Noor Ashikin Said and Zaharul Abdullah. 2025. Anthropotechnological perspective in adopting virtual reality training tool technology transfer in Malaysia aerospace industry. *Kajian Malaysia* 43(2): 1-20. https://doi.org/10.21315/km2025.43.2.1

To link to this article: https://doi.org/10.21315/km2025.43.2.1

ABSTRACT

The modern technology developed by advanced societies is always in high demand by developing societies that are striving to achieve technological advancement. However, in the transfer of technology, many mistakes were made by both the contributor and the receiver of the technology due to a failure to observe the cultural variables in the societies and the local context. This article analyses the theory of anthropotechnology with a focus on the sociotechnical aspect, based on the case study of Virtual Reality System for Training in Aerospace Manufacturing (VIRISTAM). This project involves a cross-cultural technology transfer between France and Malaysia, which have distinct working cultures and varying levels of technological expertise. This article aims to analyse the sociotechnical block, especially in terms of communication, which could have a significant impact on the integration of the technology into the social context. This research employs a semistructured interview, direct observation, and a focus group with 20 respondents in total as its methodological approach to collect the necessary data. This article concludes that it is almost rare that a method developed in one company can be transferred and applied elsewhere without any intervention. Anthropotechnology helps tailor the system of technology by taking into account the sociotechnical block, including sociocultural aspects, cognitive abilities, and organisational culture. This article also proposes a model that illustrates how an organisation can succeed in creating innovation while maintaining its sociotechnical perspective.

Keywords: anthropotechnology, sociotechnical, technology transfer, virtual reality, culture, Malaysia

INTRODUCTION

Globalisation has significantly impacted the industrial landscape, compelling multinational companies to adapt to new markets and regions. One prominent aspect of globalisation is delocalisation, where companies transfer their operations and technologies from developed countries to less developed ones. This process not only involves the physical relocation of facilities but also necessitates the transfer of technology, skills and knowledge. Such transfers are critical as they enable recipient countries to access advanced technologies, fostering local development and integration into the global economy. Delocalisation and technology transfer, however, come with challenges. According to Shahnavaz (2000), the recipient country must adapt the transferred technology to fit its local context, which includes understanding the industrial systems, cultural norms, technical capabilities, and socioeconomic conditions. Failure to adapt can lead to high rates of injuries and accidents, low work quality, and reduced productivity. Therefore, a thorough anthropotechnological analysis is essential to ensure successful technology adaptation.

Case Study: Airbus' Virtual Reality Technology Transfer to Malaysia

This article examines the case of Airbus' Virtual Reality (VR) training platform transfer to Malaysia, an example of delocalisation driven by globalisation forces. Airbus, a leading multinational aerospace company, has initiated the transfer of its VR technology from its headquarters in France to Composites Technology Research Malaysia (CTRM) in Melaka. This transfer is part of a broader strategy to enhance local capabilities and integrate Malaysia into the global aerospace supply chain. The VR training platform project, managed by the VIRISTAM research consortium, exemplifies the complexities of technology transfer. The consortium includes local and global companies, as well as Malaysian public universities, collaborating to develop a VR training tool for aerospace manufacturing technicians. The technology encompasses equipment, skills, and knowledge, and its transfer involves design, capacity and material aspects.

In this context, the theory of anthropotechnology is applied to address the challenges posed by introducing new technology into a different environment. Additionally, the sociotechnical systems approach plays a critical role in this transfer by ensuring that the social and technical elements are integrated harmoniously. This involves considering the work practices, organisational culture, and social dynamics of the local plant to align the VR training tools effectively with the local workforce's needs. The sociotechnical system theory emphasises that technology must be adapted not only technically but also socially to enhance efficiency and well-being. This case study not only highlights the process of delocalisation but also underscores the importance of adapting transferred technology to local conditions to achieve successful

integration and productivity improvements. By involving local engineers in the adaptation process and ensuring that the technology meets their specific needs and work conditions, the project promotes sustainable technology integration, skill development and long-term productivity.

LITERATURE REVIEW

The industrial and economic development of a country is heavily reliant on technology transfer activities, which are exceptionally vital for less developed countries that rely on the influx of advanced technologies from more developed nations. Technology transfer involves not only the movement of physical equipment but also the transfer of associated knowledge and skills. This combination of equipment and expertise enables the recipient to enhance efficiency and productivity, and develop their own technological capabilities (Kumar, Kumar and Persaud 1999; Abdul Rahman, Mohamad Syazli and Zainai 2018). Technology, broadly defined, consists of both tangible and intangible components. The tangible elements include tools, machinery, blueprints, techniques and processes, while the intangible aspects encompass knowledge in areas such as production, marketing, management, labour, and quality control (Kumar, Kumar and Persaud 1999). These components are essential for achieving specific outcomes, solving problems, and completing tasks through the application of particular skills and knowledge (Young and Lan 1997).

When technology is transferred from one geographical or physical location to another, the embedded knowledge is also disseminated. This inseparability of technology and knowledge underscores the importance of effective technology transfer processes, which serve as mechanisms for translating technological capabilities developed through research and development (R&D) into new or improved productivity functions (Bozeman 2000). For example, Malaysia has strategically used technology transfer to elevate its status from a developing nation to a participant in high-value-added activities (Abdul Rahman, Mohamad Syazli and Zainai 2018). The local context plays a critical role in the success of technology transfer. As Derakhshani (1983) and Van Gigch (2010) suggest, the transfer must align with the local conditions for effective absorption by the receiving country. This includes adapting to local industrial systems, cultural norms, technical capabilities, and socioeconomic conditions. The process of technology transfer is thus closely linked with knowledge transfer, as both technical knowledge and the ability to master and develop new products independently are crucial for the receiving country's development (Gibson and Rogers 1994; Chesnais 1986).

Malaysia's Technology Transfer and Development Efforts

Technological progress has become a crucial component of Malaysia's economic development. As a developing nation, Malaysia has aspired to match the technological competitiveness of many developed countries (Hill, Tham and Ragayah 2012). Notably, Malaysia possesses the capacity to independently develop and innovate new technologies (Economic Planning Unit 2021). The country steered its technological advancement with the introduction of the First National Science and Technology Policy (NSTP) in 1985, focusing on promoting scientific and technological self-reliance to accelerate socioeconomic growth. Subsequent initiatives, such as the Fifth Malaysia Plan (1986-1990) and the First Industrial Master Plan in 1986, along with the Action Plan for Industrial Development in 1990, aimed to enhance science and technology capabilities and address structural weaknesses in national industrial development (Economic Planning Unit 1986; MITI 2022; Masuyama 2001; Lim 2000a; 2000b). The pursuit of technological capability aligns with Malaysia's goal to achieve full development by 2020; however, the country's industries encounter formidable obstacles in advancing their technological capabilities and elevating the nation's economic status (Economic Planning Unit 2021). The Malaysia Education Blueprint 2015–2025 underscores the importance of collaboration between universities and industry, yet disparities exist between the output from universities and industry expectations (Azmi Ilhaamie, Rosmawani and Yusmini 2018). Moreover, industrial linkages within the manufacturing sector, particularly between Small and Medium Enterprises (SMEs) and larger enterprises, remain notably low (SME Corporation Malaysia 2019).

Challenges in Localising Foreign Technologies

Technological and knowledge transfer are critical components for economic development and industrial competitiveness, particularly in developing countries. Malaysia's journey towards leveraging these components reveals numerous challenges and strategic responses. Malaysia struggles with the capacity to produce, absorb, and utilise the latest technologies. This deficiency is a significant barrier to achieving high-growth and development goals. Local firms often lack the necessary involvement in technological activities, limiting their ability to generate indigenous technology (Rajah 2010; Suzana 2013). Further compounding these issues are weaknesses within Malaysia's domestic industries, such as insufficient supporting industries, over-reliance on external innovation sources, and a limited pool of skilled knowledge workers. These factors collectively hinder the effective transfer and localisation of high technology.

Managerial and workforce-related constraints also pose significant challenges. Burhanuddin et al. (2009) highlight issues such as incompetent managerial

skills, inadequate capital investment, a shortage of skilled workforce, and limited access to industrial experts. These constraints significantly hamper the ability of SMEs in Malaysia to adopt new technologies. Studies show that although Malaysia invests in innovation and high-technology trade, barriers such as limited absorptive capacity and delays in commercialisation mean that the country still relies significantly on imported technologies (Lam et al. 2022). While this approach accelerates the utilisation of advanced science and technology, it also perpetuates dependence on foreign innovation. To address these challenges, several strategies have been proposed and implemented. Enhancing managerial and workforce competencies is crucial, as identified by Burhanuddin et al. (2009). Training programmes aimed at improving managerial skills and technical expertise can significantly enhance the absorptive capacity of local firms. Strengthening the ecosystem of supporting industries is also essential for fostering a conducive environment for high technology transfer. Investment in infrastructure, incentives for local suppliers, and collaboration with international firms can help build a robust industrial base. Encouraging homegrown innovation through increased R&D investments and supportive policies can reduce dependence on external technologies. Besides, initiatives to stimulate local research institutions and universities to collaborate with industries can bridge the gap between research and practical applications.

Strategic partnerships play a pivotal role in successful technology transfer. The transfer of VR technology from Airbus to the local plant CTRM, where local engineers were supervised by Airbus engineers, illustrates the importance of such partnerships. These partnerships provide the necessary oversight and expertise to achieve desired outcomes and customised training programmes that address specific local needs can also enhance the mastery and independent development of transferred technologies. Understanding and integrating the local context is vital for the success of technology transfer. Policies and strategies that align with local cultural, economic, and social dynamics can foster sustainable development and ensure the transferred technology is effectively absorbed and utilised. The challenges faced by Malaysia in technological and knowledge transfer are multifaceted, involving infrastructural, managerial, and workforce-related issues. However, through strategic initiatives such as enhancing managerial skills, developing supporting industries, fostering indigenous innovation, forming strategic partnerships, and leveraging the local context, Malaysia can overcome these obstacles. Effective technology and knowledge transfer are crucial for Malaysia's industrial and economic advancement, ensuring sustainable integration into the global economy.

METHODOLOGY

This research applied qualitative methodology. Researcher resorted into three different approaches in collecting data. First, semi-structured interviews were conducted which consisted of 20 respondents. The main objective of the interviews was to track the background and the socialisation path of respondents. All the participants are filtered into ten items: name, age, gender, ethnicity, position, hometown, social class, socialisation path, cultural capital, and economic capital. The cultural capital, representing non-economic resources that facilitate social mobility, is typically benchmarked by educational attainment, participation in cultural activities, and familiarity with cultural references. Economic capital, which refers to financial resources and assets, is commonly benchmarked by income level, ownership of assets, and employment status. Social class categories, a multifaceted concept incorporating elements of both cultural and economic capital along with subjective self-perception, are often benchmarked by self-identified social class, occupational prestige, and the strength of community and social networks. By employing these benchmarks and corresponding questions, researchers can gather comprehensive data on respondents' cultural capital, economic capital, and social class, thereby enabling a nuanced analysis of sociocultural stratification and mobility within the study population. The data presented in the Tables 1, 2 and 3 offer a detailed demographic and socioeconomic breakdown of the respondents, which is essential for understanding the sociotechnical system and identifying potential sociotechnical blocks in the technology transfer process.

Table 1: Respondents by ethnic, gender, age and education level

Category	N	%
Ethnic		
Malay	20	100
Chinese	_	_
Indian	_	_
Gender		
Male	18	90
Female	2	10
Age		
26-30	15	25
31-35	1	5
36-40	4	20

(Continued on next page)

Table 1 (Continued)

Category	N	%
Education level		
PMR/SRP/LCE	_	_
SPM/MCE	10	50
STPM/HSC	_	_
Diploma	10	50
Others	-	_

Table 2: Respondents by job position, hometown and social class

Category	N	%
Job position		
Technician	14	20
Senior technician	4	20
Trainer	2	10
Hometown		
Urban	8	40
Suburban	12	60
Social class		
Lower	1	5
Middle	19	95
Upper		

Table 3: Respondents by socialisation path, cultural capital and economic capital

Category	N	%
Socialisation path		
Boarding school	10	50
Daily school	10	50
Cultural capital		
Yes	8	40
No	12	60
Economic capital		
Yes	8	40
No	12	60

DISCUSSION AND FINDINGS

Anthropotechnology is a field that emphasises the adaptation of technology to human needs and capabilities, ensuring that technological solutions are both effective and user-friendly. This approach is crucial in industrial settings, where the successful integration of new technologies often depends on their alignment with human factors such as ergonomics, cognitive ability, and cultural practices. Anthropotechnology seeks to optimise the interaction between humans and technology by considering these factors during the design and implementation phases (Wisner 1997).

The Role of Anthropotechnological Island in Technology Transfer

Wisner's (1997) concept of anthropotechnological islands builds on the principles of anthropotechnology by proposing the creation of microsocieties within enterprises that replicate the technological and social structures of the source country. This concept is particularly relevant in contexts where advanced technologies are transferred from developed to less developed countries. According to him, these islands serve as isolated environments where the contradictions between local societal norms and modern technological practices are minimised. By transplanting both the technological processes and the organisational structures from the developed country, these microsocieties ensure that the technology can function effectively without being hindered by local societal constraints. This approach provides a controlled setting where technology transfer can occur more seamlessly, allowing local workers to gradually adapt to and master the new technology under the guidance of experts from the source country.

Sociotechnical Systems and Technology Transfer

Sociotechnical systems theory expands on these ideas by promoting the design of work systems that enhance both technical efficiency and human well-being by aligning technological solutions with organisational structures, work practices, and social relationships (Figure 1). This approach recognises that the success of technological solutions depends not only on the technology itself but also on the social context in which it is implemented (Cherns 1976). Sociotechnical systems theory advocates for a holistic view that considers the interdependencies between technology, work processes, and human factors. The flow from anthropotechnology to anthropotechnological islands and then to sociotechnical systems illustrates the progression from foundational design principles to practical application in controlled environments and, ultimately, to broader organisational integration (Figure 2). It is crucial in understanding how technology transfer can be effectively implemented in different contexts,

such as the VIRISTAM case study involving the VR technology transfer from Airbus to Malaysia. Anthropotechnology provides the foundational principles for designing technology that meets human needs and capabilities.

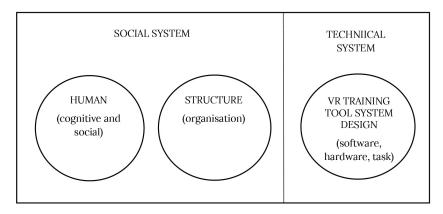
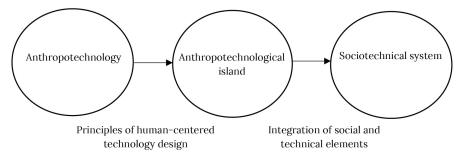
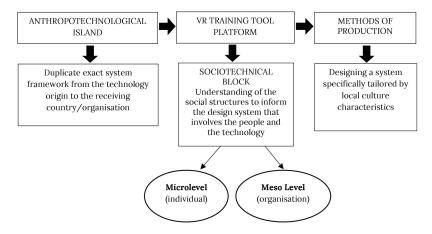



Figure 1: Sociotechnical system in VIRISTAM research project.

Figure 2: Framework for integrating human-centred design in technology transfer through anthropotechnology and sociotechnical systems.

In the VIRISTAM case study, the VR training platform from Airbus is designed to be accessible and effective for aerospace manufacturing technicians in Malaysia. This platform combines equipment, training, and guidance to align with the specific needs of the local workforce, thereby addressing potential mismatches between the technology and the users' skills and work environments. In the context of the VIRISTAM project, an anthropotechnological island is established within the local plant CTRM in Melaka. This controlled environment allows for the gradual adaptation and mastery of the VR technology by local engineers, who receive training and supervision from Airbus engineers. This method helps resolve contradictions between local societies and modern technologies by providing a space where local workers can develop new skills and knowledge under expert guidance (Wisner 1997). Finally, sociotechnical systems theory integrates the social and technical elements of an organisation to ensure that


technological solutions are both effective and sustainable. This theory promotes a holistic view that aligns technological solutions with organisational structures, work practices, and social relationships. In the context of the VIRISTAM project, which aims to transfer VR training platforms to enhance local capabilities in the Malaysian aerospace industry, the demographic and socioeconomic data of the respondents provides critical insights into the sociotechnical system and potential sociotechnical blocks.

Sociotechnical Blocks in the Malaysian Aerospace Industry

The workforce at CTRM, similar to many industrial settings, has a diverse demographic profile in terms of age and expertise. The age distribution of workers at CTRM is varied. The data shows that the workforce is entirely Malay, which simplifies cultural integration but may limit exposure to diverse perspectives and practices crucial for enriching the technology transfer process. The age distribution indicates a predominantly young workforce, with 75% aged 30 and below, which implies adaptability and willingness to learn new technologies. There is higher degree of technological adaptability and familiarity with digital tools. Older workers, usually aged 35 and above, contribute valuable experience and knowledge of traditional manufacturing processes. This generational mix can both enrich the workplace with a range of perspectives and pose challenges in aligning varying levels of tech-savviness and openness to new training methodologies.

The educational qualifications, with 50% having basic education (SPM/ MCE) and 50% holding diplomas, point to a need for further training and skill development to handle advanced VR technologies effectively. The job positions, with a majority being technicians (70%), followed by senior technicians (20%) and trainers (10%), reflect varied levels of experience and expertise within the workforce. The training background of workers at CTRM typically includes on-the-job training, where new employees learn through practical experience under the supervision of senior staff. For engineers and technicians, training often involves specific technical skills pertinent to aerospace manufacturing and maintenance. Before the introduction of VR technology, traditional training methods at CTRM included classroom-based theoretical instruction and hands-on practice with actual aircraft components. Furthermore, the data on socialisation paths shows an even split between boarding school and daily school backgrounds, which may influence the learning styles and adaptability of the workforce. Addressing these sociotechnical blocks involves enhancing continuous professional development, and investing in infrastructure and support systems to ensure equal access to the VR training technology. By implementing these strategies, the organisation can overcome these sociotechnical blocks, ensuring smoother and more effective integration of the VR training platform, thereby fostering a more inclusive and resilient sociotechnical system within the Malaysian aerospace industry.

In the VIRISTAM case study, the final integration of the VR technology into the broader organisational structure is guided by sociotechnical systems theory as pictured in Figure 3. This approach ensures that the technology is not only technically sound but also fits well within the local work practices and organisational culture. By involving local engineers in the adaptation process and ensuring that the technology meets their specific needs, the sociotechnical system approach enhances both technical efficiency and the well-being of the workforce. The progression from anthropotechnology to anthropotechnological islands and then to sociotechnical systems illustrates a comprehensive approach to technology transfer. This approach ensures that the VR technology from Airbus is effectively adapted and integrated into the local context, resulting in sustainable and meaningful technological advancement for the Malaysian aerospace industry. This holistic integration not only enhances productivity but also supports the socioeconomic development of the region by building local technological capabilities. This approach aligns with the broader objectives of ensuring that technological advancements contribute positively to the local context, thereby promoting long-term sustainability and development (Perkins, Rasiah and Woo 2017; Economic Planning Unit 2021).

Figure 3: Flow of VIRISTAM technology transfer based on theory of anthropotechnological island.

The process of technology transfer involves not just the physical relocation of technology, but also its adaptation to the local cultural and social context. In the case of Malaysia, the technology imported from France comes with its own work systems, necessitating modifications to fit the receiving culture. This adaptation process involves various social actors, including engineers, universities, industries, government bodies, and technology users. Understanding the conditions and consequences of technology transfer within the framework of anthropotechnology is crucial. Wisner (2004) emphasised

the importance of considering the historical, geographic, and ethnological dimensions of the receiving partner when planning a technology transfer project. Anthropotechnology employs a comparative method, advocating for a deeper understanding of the cultural context in which technology is being transferred. The case study of VR technology transfer from Airbus to the local plant CTRM in Malaysia highlights the challenges and adaptations required for successful technology transfer. CTRM's experience underscores that technology is culturally conditioned and can elicit varied reactions such as acculturation, integration, assimilation, accommodation, or rejection (Kroeber 1948). The technology transfer process at CTRM involves high usage of technology in manufacturing and operations. The organisation's approach aligns with the concept of anthropotechnological islands, where expatriate senior executives and researchers from Airbus ensure that knowledge transfer meets the quality standards of the headquarters. This includes training and briefing local senior engineers at Airbus headquarters in France. However, the standardised system of anthropotechnological islands was disrupted by the involvement of local technicians in designing the VR training tool. These technicians, who are the end users of the technology, needed the technology to fit their capacities for successful transfer. Language barriers emerged as a significant challenge. The senior engineers designing the VR tool primarily spoke English and were fluent in French, whereas the local technicians were more comfortable using Malay. During focus group discussions, technicians were given English sentences to read, comprehend, and edit for the VR instruction board (refer Figure 4). The original English instructions had to be translated into Malay, with specific amendments to technical terms used by floor technicians. Figure 5 shows the amendments made by the technicians during the focus group session. For example, the technicians noted that:

The instructions given are too broad and not specific. You cannot just say 'close the door properly'. The word 'properly' should be explained in detail on what to do specifically, or it will risk safety. (CTRM Technician, Respondent A)

Some terms we use here on the floor are different from what the engineers use. We have our own terms among us. (CTRM Technician, Respondent B)

These insights led to the realisation that the technology developer team must avoid terminology unfamiliar to the technicians. This scenario demonstrates how the concept of anthropotechnological islands can be expanded to anthropotechnological archipelagos, coined by Olmedo (2015), where cultural differences and language barriers are navigated to facilitate successful technology transfer. The VR training platform serves as a sociotechnical block, standardising the method of production between the giving and receiving countries while accommodating local cultural traits. The core idea of anthropotechnological archipelagos is to make technological transfer

successful by considering the cultural traits of the technology receiver. This concept modifies the 'normal' chain of anthropotechnological islands based on everyone's cultural representation. In the case of CTRM, the archipelago acts as a cultural exposure medium, integrating social, psychological, and cognitive characteristics of local workers into the learning process of the VR training tool.

Figure 4: VR instruction board.

Figure 5: Amendments made by the technicians.

Communication and Cognitive Gaps in VR Technology Transfer

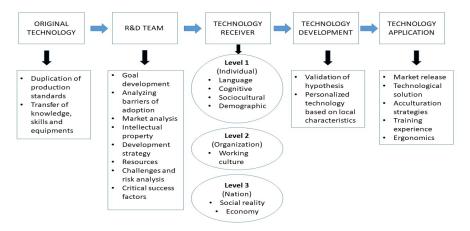
In the context of the VIRISTAM technology transfer case study, the distinctive communication code employed by different groups of workers highlights the sociotechnical block in the technology transfer process. Bourdieu's theory of social reproduction explains that cultural capital, a key component in this context, comprises non-financial social assets like education, intellect, and speech patterns, which influence social mobility and class distinctions (Bourdieu 1986). In the case of CTRM, the technicians, who predominantly hold diplomas and are Malay, communicate in a vernacular language. This contrasts sharply with the engineers designing the training tool platform, who possess higher cultural capital, have diverse ethnic backgrounds, and command English, thus creating a cultural and linguistic gap between the two groups.

The problem is further compounded by the structure of the instructional boards for the VR training tool. The language used by the engineers in these boards often fails to match the comprehension levels and cultural context of the technicians, leading to difficulties in effective knowledge transfer. The cognitive abilities of workers, shaped by their sociocultural backgrounds, also play a significant role in the effectiveness of technology transfer. Technicians' cognitive skills, including their ability to process and understand complex technical instructions, are influenced by their educational experiences, cultural contexts, and their experience with VR technology. The vernacular language they are most comfortable with reflects their cognitive frameworks and ways of interpreting information. If the training materials and instructions are not adapted to these cognitive frameworks, the effectiveness of the technology transfer is compromised. For example, if instructions are provided in a formal, technical language that is not familiar to the technicians, their ability to understand and implement these instructions will be hindered. In the interview, when asked about the challenges the technicians have with the instruction board given, they responded by stated:

One of the main issues is that many of us do not really understand English well. On the shop floor, we use Malay all the time to communicate. (Focus group Interview, CTRM Technician A)

It makes it difficult to follow the instructions properly. The English terms and phrases do not always make sense to us, so we often struggle to understand what we need to do. (Focus group Interview, CTRM Technician B)

We would prefer the instruction board language to be in Malay. It is the language we are most comfortable with, and it would help us understand the instructions better and follow the procedures more accurately. (Focus group Interview, CTRM Technician C)


Based on the data collected, it has been found that every single person in the institution have different level of English proficiency. To address these issues and facilitate a smoother technology transfer, it is crucial to ensure consistency in the communication code. The language used in training materials should be aligned with the vernacular language of the technicians, reducing the risk of misinterpretation and enhancing productivity and safety. The anthropotechnological archipelago framework supports this approach by integrating the cultural traits of the technology receivers into the learning process, ensuring that the technology is adapted to the local context (Wisner 1997). This approach mitigates the sociotechnical block by bridging the cultural and linguistic gap, ultimately promoting successful technology transfer and improving workplace efficiency. Additionally, acknowledging and adapting to the cognitive abilities of workers based on their sociocultural background can further enhance the learning experience and effectiveness of technology adoption in diverse environments.

A STRUCTURED FRAMEWORK IN MANAGING SOCIOTECHNICAL BLOCK IN TECHNOLOGY TRANSFER

Airbus' duplication of organisation system in their global supply chains could be explained within the concept of 'anthroptechnological islands', where all global supply chains are trained and structured as most identical as the parent company in France. For the VIRISTAM project, Airbus has been sending directors and managers of the project to control the operation within the framework of the 'mother company'. These people are seen as the representatives of the organisation to ensure a complete technology transfer. They also hire local staff that have educational background in France, and preferably can speak French. These people are fluent in French and are familiar with the French culture. The managers are local staff with bi-cultural background whom have been indoctrinated with the French-centric working culture. However, that is only on the managerial level, which involves the technology developers and the senior engineers. When the technology goes down to the technicians on the floor (the user of the technology), it takes on different environment – the sociotechnical block.

Customising Technology for Local Adoption

The structured framework (refer Figure 6) for managing sociotechnical blocks in technology transfer, particularly in the context of the VR training tools transferred from Airbus to the local plant emphasises the intricate interplay between social and technical factors at multiple levels: individual, organisational, and national. The process begins with the duplication of production standards and the transfer of essential knowledge, skills, and equipment from Airbus to the receiving organisation, ensuring that the foundational elements are in place. The R&D team is tasked with a comprehensive range of responsibilities, including setting clear goals, analysing barriers to adoption, conducting market analysis, managing intellectual property, devising a development strategy, allocating resources, and identifying and mitigating risks. They must also determine the critical success factors essential for the project's success. At the individual level, considerations such as language proficiency, cognitive abilities, sociocultural background, and demographic factors like age and gender are crucial. At the organisational level, the existing working culture must be aligned with the new technology, while at the national level, the broader social reality and economic environment of Malaysia are taken into account.

Figure 6: Structured framework in managing sociotechnical block in technology transfer.

During the technology development phase, assumptions and hypotheses are rigorously tested and validated, and the technology is customised to fit local characteristics and needs. The application phase involves the market release of the technology, ensuring it provides effective solutions, implementing acculturation strategies to aid user adaptation, providing comprehensive training, and ensuring ergonomic design for user-friendliness. The concept of anthropotechnological islands, where Airbus duplicates its organisational systems across global supply chains, plays a crucial role in maintaining consistency and providing controlled environments for local engineers to adapt and master the technology under the guidance of bi-cultural managers who bridge the cultural gap. This structured framework acknowledges that while the managerial level involves technology developers and senior engineers familiar with the French-centric working culture, the real challenge-the sociotechnical block-arises when the technology reaches the technicians on the floor, necessitating significant cultural adaptations. The proposed transcultural technology transfer framework emphasises the importance of understanding and analysing the cultural embedding of technology, considering non-technological factors such as sociocultural, cognitive, language, and working culture at every stage to optimise the end-users' learning experience. Stakeholders' concerns are addressed comprehensively: developers focus on meeting technical requirements, users on practical usability, and the organisation on added value and regulatory compliance. This holistic approach ensures that the VR training tools are not merely imposed but are adapted and integrated in a way that fosters skill development, enhances productivity, and promotes long-term sustainability, aligning technical requirements with cultural contexts and validating the principles of anthropotechnology.

CONCLUSION

The study of culture proves fundamental in technology transfer, as illustrated in the context of this VIRISTAM case study. Anthropotechnology plays a crucial role in smoothing the transfer of technology and organisational systems across different cultural contexts. This role is not only about technical adjustments but also about understanding and integrating the social and cultural dynamics of the receiving environment. Understanding the characteristics and limits of humans is essential for developing and implementing tools effectively. This approach ensures that machines and technologies are better adapted to users based on anthropometric data, which includes ergonomic considerations that take into account the physical dimensions and capabilities of human users.

In addition, another way to assist the effective transfer of technology is by studying a reference location where the technology is already inserted, aiming to identify the barriers and difficulties of its implementation. This step is crucial because it allows the transferring team to anticipate potential issues and design strategies to mitigate them. For instance, understanding the linguistic capabilities of the local workforce can guide the development of training materials in the local language, as was necessary in the CTRM case where VR instructions were translated from English to Malay to ensure comprehension and effective use by local technicians. The demographic profile of the workers, including their gender, age, educational background, and prior work experience, plays a significant role in shaping the transfer process. Most technicians were more comfortable using Malay rather than English, highlighting the need for localised training content. Furthermore, the workers' exposure to different working environments before this project varied, influencing their adaptability to new technologies. This diversity necessitates a flexible training approach that can cater to varying levels of technological familiarity.

Moreover, the sociotechnical block in technology transfer considers not only individual factors but also organisational and national levels. At the organisational level, the working culture and practices need to be aligned with the new technology. This involves creating an environment that supports continuous learning and adaptation, which can be facilitated by having local managers with bi-cultural backgrounds who understand both the parent company's culture and the local context. At the national level, social realities and economic conditions must be taken into account to ensure that the technology is not only adopted but also sustainable in the long run. The integration of sociotechnical systems theory, which emphasises the importance of considering both social and technical elements in the design and implementation of technological solutions, is crucial in this context. In the case of VIRISTAM, this theory ensures that the VR training tools are not only technically effective but also align with the organisational culture, work practices, and social dynamics

of the local plant. By involving local engineers in the adaptation process and ensuring that the technology meets their specific needs and work conditions, the sociotechnical approach enhances both technical efficiency and the wellbeing of the workforce. This holistic view promotes sustainable technology integration by aligning the new VR tools with the existing socio-organisational structures, thereby enhancing overall productivity and job satisfaction.

Additionally, the structured cross-cultural technology transfer framework proposed in this context highlights the necessity of considering every stage of the transfer process, from the original technology development to its application in the local setting. Each stage involves critical analyses and validations to ensure that the technology is appropriately tailored to the local context. For instance, the R&D team plays a pivotal role in managing the technology transfer by setting clear objectives, analysing barriers to adoption, and developing strategies to address these barriers. This structured approach ensures that all stakeholders, including engineers, technicians, managers, and end users, are aligned and engaged throughout the process.

Without a comprehensive understanding of these factors, technology can still be transferred, but the results may not be satisfactory. Through data collection and analysis, it becomes evident that anthropotechnology significantly contributes to successful technology transfer by considering technological factors, the context of both the technology's origin and the receiving environment, and the society that will ultimately use the technology. The case of technology transfer in CTRM demonstrates that a 'universal' machine fitting all contexts does not exist. Multinational companies must account for cultural aspects when transferring technology to different countries to avoid sociotechnical blocks. This comprehensive approach ensures that technological advancements are not merely imposed but are adapted and integrated, fostering skill development, productivity, and long-term sustainability.

In conclusion, the study underscores that technology transfer is a complex process that requires a deep understanding of the cultural, social, and organisational context of the receiving environment. The successful transfer of VR training tools from Airbus to CTRM highlights the importance of anthropotechnology in facilitating this process. By considering the demographic profile of the workers, the organisational culture, and the broader national context, companies can ensure that new technologies are not only adopted but also effectively integrated into the local work environment. This approach not only supports the immediate goals of effective technology adoption but also contributes to broader objectives of socioeconomic development and technological self-reliance for Malaysia.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to AIRBUS Group Innovations Asia-Pacific, Aerospace Malaysia Innovation Centre (AMIC), Universiti Kebangsaan Malaysia and Composite Technology Research Malaysia (CTRM), for allocation of research grant (VIRISTAM Research grant: TD-2013-013), research facilities and equipment, as well as access to fieldwork.

REFERENCES

- Abdul Rahman Hamdan, Mohamad Syazli Fathi and Zainai Mohamed. 2018. Evolution of Malaysia's technology transfer model facilitated by national policies. International Journal of Engineering & Technology 7(2.29): 196–202. https://doi.org/10.14419/ijet.v7i2.29.13317
- Azmi Ilhaamie Abdul Ghani, Rosmawani Che Hashim and Yusmini Md Yusoff. 2018. The employability skills of Malaysian university students. *International Journal of Modern Trends in Social Sciences* 1(3): 1–14. https://gaexcellence.com/ijmtss/article/view/641
- Bourdieu, P. 1986. The forms of capital. In Handbook of Theory and Research for the Sociology of Education, ed. J. Richardson, 241–258. Connecticut: Greenwood Press.
- Bozeman, B. 2000. Technology transfer and public policy: A review of research and theory. Research Policy 29(4–5): 627–655. https://doi.org/10.1016/S0048-7333(99)00093-1
- Burhanuddin, M.A., Fahmi Arif, V. Azizah and A.S. Prabuwono. 2009. Barriers and challenges for technology transfer in Malaysian small and medium industries. In 2009 International Conference on Information Management and Engineering. 3–5 April. https://doi.org/10.1109/ICIME.2009.39
- Cherns, A. 1976. The principles of sociotechnical design. *Human Relations* 29(8): 783–792. https://doi.org/10.1177/001872677602900806
- Chesnais, F. 1986. Science, technology and competitiveness. In STI Review, No. 1, 85–129. Paris: Organisation for Economic Co-operation and Development.
- Derakhshani, S. 1983. Factors affecting success in international transfers of technology: A synthesis, and a test of a new contingency model. The Developing Economies 21(1): 27–47. https://doi.org/10.1111/j.1746-1049.1984.tb00650.x
- Economic Planning Unit. 1986. Fifth Malaysia Plan 1986–1990. Putrajaya: Economic Planning Unit.
- _____. 2021. Twelfth Malaysia Plan, 2021–2025: A prosperous, inclusive, sustainable Malaysia. Putrajaya: Economic Planning Unit.
- Gibson, D.V. and E.M. Rogers. 1994. R&D collaboration on trial: The microelectronics and computer technology corporation. Boston: Harvard Business Review Press.
- Hill, H., S.Y. Tham and Ragayah Haji Mat Zin, eds. 2012. Malaysia's development challenges: Graduating from the middle. London: Routledge. https://doi.org/10.4324/9780203802410

- Kroeber, A.L. 1948. Anthropology: Race, language, culture, psychology, prehistory. New York, NY: Harcourt, Brace & World.
- Kumar, V., U. Kumar and A. Persaud. 1999. Building technological capability through importing technology: The case of Indonesian manufacturing industry. *Journal* of Technology Transfer 24(1): 81–96. https://doi.org/10.1023/A:1007728921126
- Lam, F.L.L., S.H. Law, W.N.W. Azman-Saini, M.S.M. Khair-Afham and L.T. Goh. 2022. High technology trade, innovation and economic growth: Evidence from aggregate and disaggregate trade products. *Jurnal Ekonomi Malaysia* 56(1): 15–31. https://doi.org/10.17576/JEM-2022-5601-02
- Lim, H. 2000a. Malaysia's industrial policy and its relevance in the current economic crisis. *Journal of Asian Economics* 11(3): 297–313.
- _____. 2000b. Technology and economic development in Malaysia. Kuala Lumpur, Malaysia: Institute of Strategic and International Studies.
- Masuyama, S. 2001. Characteristics of Malaysian domestic industries. Kuala Lumpur, Malaysia: Malaysian Institute of Economic Research.
- MITI (Ministry of International Trade and Industry). 2022. MITI Report. https://www.miti.gov.my/miti/resources/MITI%20Report/MITI_REPORT_2022.pdf (accessed 15 March 2024).
- Olmedo, E. 2015. Identity at work: Ethnicity, food & power in Malaysian hospitality industry. Singapore: Springer. https://doi.org/10.1007/978-981-287-561-7
- Perkins, D.H., R. Rasiah, R. and W.T. Woo. 2017. Explaining Malaysia's past economic growth. New York, NY: Springer.
- Rajah, R. 2010. Technological innovation in Malaysian manufacturing: The case of the electronics industry. *Technology in Society* 32(1): 69–78.
- Shahnavaz, H. 2000. Role of ergonomics in the transfer of technology to industrially developing countries. *Ergonomics* 43(7): 903–907. https://doi.org/10.1080/001401300409099
- SME Corporation Malaysia. 2019. SME annual report 2018/19. https://smecorp.gov.my/index.php/en/laporan-tahunan/3911-sme-annualreport-2018-2019 (accessed 20 March 2024).
- Suzana, M. 2013. Technological capabilities and innovation in Malaysian manufacturing. Journal of Economic Surveys 27(2): 327–348.
- Van Gigch, J.P. 2010. Applied general systems theory. New York: Harper & Row.
- Wisner, A. 1997. Anthropotechnologie: Vers un monde industriel pluricentrique. (Anthropotechnology: Towards a multicentric industrial world). Toulouse: Octarès. https://www.octares.com/travail-et-activite-humaine/53-anthropotechnologie-vers-un-monde-industriel-pluricentrique.html?utm (accessed 12 February 2024).
- Wisner, A. 2004. Anthropotechnology: Learning from cultures. In Cultural ergonomics, ed. M. Kaplan, 100–128. UK: Emerald Group Publishing. https://doi.org/10.1016/ S1479-3601(03)04007-4
- Young, S. and P. Lan. 1997. Technology transfer to China through foreign direct investment. Regional Studies 31(7): 669–679. https://doi.org/10.1080/00343409750130759