ANTI-ALLERGIC EFFECTS OF 1,5-BIS(4’-HYDROXY-3’-METHOXYPHENYL)-1,4-PENTADIENE-3-ONE ON MAST CELL-MEDIATED ALLERGY MODEL

AGUNG ENDO Nugroho1,4*, NUNUNG Yuniarti1, ENADE PERDANA ISTYASTONO3, SUPARDJAN2, KAZUTAKA MAEYAMA4 AND LUKMAN HAKIM1

1Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Gadjah Mada University, Jogjakarta 55281, Indonesia
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Jogjakarta 55281, Indonesia
3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sanata Dharma University, Jogjakarta 55002, Indonesia
4Department of Pharmacology, Informational Biomedicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon-shi, Ehime 791-0295, Japan

1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one is a 1,5-diphenyl-1,4-pentadiene-3-one analogue of curcumin that is produced by modifying the middle site of curcumin leading to 1,4-pentadiene-3-ones to maintain the hydroxy moiety at the aromatic rings that are responsible for its biological activities. Curcumin has been reported to have anti-allergic effects and can inhibit the release of histamine from mast cells.

In the present study, we evaluated the anti-allergic effects of 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one in a mast cell-mediated allergy model in order to provide information about a newly synthesised compound for an alternative allergy drug. The study was performed using (1) a rat basophilic leukaemia (RBL-2H3) cell line, which is a tumour analogue of mast cells, with DNP24-BSA, thapsigargin and ionomycin as inducers for secretory markers from mast cells, and (2) an active cutaneous anaphylaxis (ACA) reaction, with ovalbumin as an inducer of mast cell degranulation. Treatment with 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one strongly inhibited the DNP24-BSA, thapsigargin and ionomycin-mediated release of histamine and β-hexosaminidase from the RBL-2H3 cell line. The results indicated that this compound influenced the activation processes of FcεRI by antigen and intracellular Ca2+ signalling events in mast cells. In the type 1 allergy model, this compound also inhibited the active cutaneous anaphylactic reaction on rat dorsal skins generated by ovalbumin. We conclude that the compound 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one showed anti-allergic activities mediated by mechanisms related to intracellular signalling events in mast cells.

Keywords: 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one, RBL-2H3, Anti-allergic Activity, Histamine, β-hexosaminidase

*Corresponding author: Agung Endro Nugroho, e-mail: agungendronugroho@yahoo.com
INTRODUCTION

The compound 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one is a 1,5-diphenyl-1,4-pentadiene-3-one analogue of curcumin (Sardjiman et al. 1997). It is naturally isolated from the rhizomes of *Curcuma domestica* and *Curcuma longa* L. (Masuda et al. 1993; Park and Kim 2002). Its chemical structure is similar to that of curcumin; both compounds have hydroxy and methoxy moieties at their aromatic rings. The chemical difference occurs in the middle site where curcumin possesses 1,7-diphenyl-1,6-heptadiene-3,5-dione, whereas its analogue possesses 1,5-diphenyl-1,4-pentadiene-3-one (Fig. 1). Although curcumin has several beneficial pharmacological effects, its use is limited by its instability, which is strongly affected by factors such as pH and exposure to light. The instability of curcumin at alkaline pH is caused by the active methylene moiety. The decomposition of curcumin can also occur as a result of light exposure, a process that is also mediated by the active methylene moiety (Tonnesen and Karlsen 1985; van der Goot 1995). Compounds such as the 1,4-pentadiene-3-ones, which lack the active methylene moiety and 1 carbonyl moiety of curcumin, display increased stability. The modification of the middle site of curcumin leading to 1,4-pentadiene-3-ones still maintains the hydroxy moiety at the aromatic rings that are responsible for its biological activities. Additionally, the synthesis of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one is a simple and easy method (Sardjiman et al. 1997).

Several studies have examined the effects of curcumin on allergic diseases. An ethyl acetate extract of *Curcuma longa* L., which contains curcuminoids, has been shown to exhibit a preventive effect on type I and IV allergy models (Yano et al. 2000a). Furthermore, both the ethyl acetate extract of *Curcuma longa* L. and curcumin were found to decrease histamine release from mast cells by blocking intracellular signalling events in mast cells. However, the ethyl acetate extract of *Curcuma longa* L. had a somewhat stronger activity than that of curcumin, which may have been due to the presence of curcumin derivatives (Yano et al. 2000b). Another study has previously examined the anti-allergy activities of curcumin and curcumin-related compounds in relation to their antioxidant activities. Most of these compounds were shown to inhibit histamine release from RBL-2H3 cells induced by concanavalin A or a calcium ionophore. In the study, hydroxy moieties of curcumin were shown to have significant anti-oxidative and anti-allergic activities. Most
of the compounds showed anti-allergic activities through mechanisms related to anti-oxidative activities, although others display anti-allergic mechanisms unrelated to their antioxidative activity. These results suggest that the hydroxy moiety of curcumin is responsible for its antioxidant activity and may also contribute to the inhibition of histamine release (Suzuki et al. 2005). In a guinea pig model of airway hyperresponsiveness, 20 mg/kg body weight of curcumin significantly inhibited ovalbumin (OVA)-induced airway constriction and airway hyperactivity (Ram, Dass and Ghosh 2003).

In the present study, we investigated the anti-allergic effects of 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one. In the in vitro study, we examined the effect of this compound on the release of histamine and β-hexosaminidase from RBL-2H3 (rat basophilic leukaemia) cells induced by mediator releasing agents such as DNP21-BSA, thapsigargin and ionomycin. In the in vivo study, we determined the effect of this compound on an active cutaneous anaphylaxis reaction on the dorsal skin of rats, which was generated by ovalbumin. This study may provide information about discovery of a cheap and easily synthesised compound for an alternative allergy drug.

![Chemical structure of curcumin (a) and 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one (b).](attachment:image.png)

Fig. 1: Chemical structure of curcumin (a) and 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one (b).
METHODS

Materials

1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one was synthesised according to methods described previously (Sardjiman et al. 1997). Histamine release inducers used were ionomycin, thapsigargin, and ovalbumin (Sigma Chemical Co., St. Louis, MO, USA). Dinitrophenylated bovine serum albumin (DNP24-BSA), which was used as an antigen, and monoclonal IgE against DNP24-BSA (purified from supernatants of an IgE producing hybridoma) were purchased from the Department of Pharmacology, Ehime University, Japan. Eagle’s minimum essential medium (MEM) and antibiotics were purchased from Gibco (Grand Island, NY, USA). Foetal calf serum was obtained from JRH Biosciences (Kansas, USA). Piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES) was purchased from Dosindo (Kumamoto, Japan). Evans blue, Alcian blue and Nuclear fast red were purchased from Sigma Chemical Co. (St. Louis, MO, USA). All other reagents were high-grade qualified materials.

Preparation of Drug Solution

The drug was dissolved in DMSO to provide a 25 mM stock solution and diluted with PIPES buffer to provide a series of drug concentrations (0.1–100 μM). Serial dilutions of the drug were prepared immediately before the in vitro assays were performed. In our preliminary study, 0.4% DMSO did not influence the histamine release from rat mast cells. In the in vitro assays, we used PIPES buffer solution for the control group treatment.

Animals

Male Wistar rats (250-300 g) were housed in a room with controlled temperature and lighting and allowed free access to chow and tap water. The animal handling protocols of this study were in accordance with the guidelines of the animal care of the Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Gadjah Mada University, Indonesia, and approved by the committee for animal research.
Culture of RBL-2H3 Cells

RBL-2H3 cells were cultured in MEM medium containing 15% foetal calf serum and antibiotics (penicillin and streptomycin) in a humidified atmosphere (5% CO₂) at 37°C (Barsumian et al. 1981). The cells were seeded into 24-well culture plates at a density of 5 x 10⁵ cells/0.4 mL per each well and then incubated overnight at 37°C. For DNP₂₄-BSA experiments, the cells were sensitised with 0.5 µg/mL of monoclonal IgE. On the second day, the medium was removed, and the cells were washed twice with 0.5 mL PIPES buffer (25 mM PIPES, 119 mM NaCl, 5 mM KCl, 5.6 mM glucose, 0.4 mM MgCl₂, 1 mM CaCl₂, 40 mM NaOH, and 0.1% bovine serum albumin at pH 7.2) and pre-incubated for 10 min at 37°C after addition of 180 µL PIPES either without (as a negative control) or with the drug (0.1–100 µM). After incubation, 20 µL of stimulant (200 ng/mL DNP₂₄-BSA, 5 µM thapsigargin, or 10 µM ionomycin) was added to each well, and the plate was incubated at 37°C for 30 min.

Assay of Histamine Release

Histamine released into the medium was measured by HPLC-fluorometry, as described previously (Yamatodani et al. 1985). After a 30-min incubation, the plates were centrifuged at 3,000 rpm for 5 min and 50 µL of the supernatant was mixed with 250 µL of 3% perchloric acid containing 5 mM Na₂-EDTA. After addition of 30 µL of 2 M KOH/1 M KH₂PO₄ and centrifugation at 10,000 x g for 15 min at 4°C, 50 µL of the supernatant was injected directly onto a column packed with a TSKgel SP-2SW cation exchanger (Tosoh, Tokyo). To measure the total histamine content in cells, 350 µL of PIPES buffer was added to 6 wells, and the cells were then sonicated. 50 µL of cell homogenate was used for the histamine assay described above. Histamine was eluted with 0.25 M potassium phosphate at a flow rate of 0.6 mL/min, post-labelled with o-phthalaldehyde under alkaline conditions and detected using a F1080 Fluorometer (Hitachi, Tokyo) at excitation and emission wavelengths of 360 and 450 nm, respectively.
Assay of β-Hexosaminidase Enzyme Release

For the β-hexosaminidase enzyme assay, 50 μL of supernatant was incubated with p-nitrophenyl-2-acetamido-2-deoxy-β-D-glucopyranoside (100 μL, 2.5 mM in 50 mM sodium citrate buffer, pH 4.5) for 1 h at 37°C. 20 μL of 2 M KOH/ 1 M KH₂PO₄ was then added, and the β-hexosaminidase enzyme activity was determined by a colorimetric analysis method using a microplate reader at 405 nm.

Active Cutaneous Anaphylaxis (ACA) Reaction

The rats were sensitised on days 1 and 7 with 0.1% ovalbumin and 10% Al(OH)₃ (1 mL per 200 g body weight BW) at the dorsal site, subcutaneously (SC). On day 14, the anaphylaxis reaction was generated with 52.5 mg per 200 g BW of ovalbumin, given SC. To determine vascular permeability, the rats were injected with 1% Evans blue via the tail vein, and the dorsal pigmentation areas were observed for 8 h after ovalbumin challenge. The drugs were orally administered 15 min prior to ovalbumin challenge. Cromolyn sodium (2.16 mg/kg BW, SC) was used as a reference drug. The area under the curve of observed Evans blue dye was calculated to evaluate the inhibitory effect.

Histological Observation

The dorsal skins were removed and fixed in Carnoy’s solution (ethanol, chloroform and glacial acetic acid in a ratio of 60:30:10 by volume) for 12 h, changing to fresh solution every 3 h. To detect mast cells, the specimens were stained with 0.1% Alcian Blue (pH 0.3) and Nuclear fast red (NFR). They were rinsed in distilled water and gradually dehydrated in a series of alcohol concentrations. The slides were cleared in xylene and mounted with mounting medium. Under light microscopy, mast cells were qualitatively identified as blue granules against a pale red background.

Statistical Analysis

All data were expressed as mean ± SEM. One-way analysis of variance (ANOVA) followed by the least significant difference (LSD) test was used
for statistical analyses. P-values of less than 0.05 were considered significant.

RESULTS AND DISCUSSION

In our preliminary study, 180 μL of DMSO solution diluted 250x in PIPES buffer to yield 0.4% DMSO did not have a significant effect on the release of histamine from rat mast cells when compared to controls (48.54 ± 1.22 vs. 48.24 ± 0.84, n= 3 to 5). DMSO can greatly influence the effect of various histamine inducers at high concentrations (> 3 or 5% DMSO); however, at low concentrations, the effect of DMSO on the histamine release from mast cells was not considered significant (Moldt, Andersen and Christensen 1988). In our study, the highest concentration of DMSO was 0.4%.

DNP24-BSA (20 ng/mL) stimulated the release of histamine and β-hexosaminidase from RBL-2H3 cells by 37.23 ± 2.16% and 30.50 ± 0.58%, respectively (Fig. 2). Pre-incubation of RBL-2H3 cells with 1,5-bis (4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one for 30 min signifi- cantly inhibited the DNP 24-BSA-induced release of histamine and β-hexosaminidase in a dose-dependent manner. At the highest dose (100 μM), the compound inhibited the release of histamine and β-hexosaminidase from RBL-2H3 cells by 60.17 ± 1.90% and 30.50 ± 0.58%, respectively (Table 1). The IC 50 value of the inhibitory effect of 1,5-bis (4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one was used as the parameter of potency. The IC 50 values of the inhibitory effects of the compound on DNP24-BSA-mediated histamine and β-hexosaminidase release were 62.09 μM and 22.64 μM, respectively.
Fig. 2: Effect of 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one on (a) histamine and (b) β-hexoaminidase release from RBL-2H3 cells in the presence of DNP-BSA 20 ng/mL. Data represent mean±SEM, and are three independent experiments. * P<0.05 compared to the negative control value.
Table 1: The inhibitory effects of 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one on the histamine release from RBL-2H3 cells and and its spontaneous histamine and \(\beta \)-Hexosaminidase enzyme release.

<table>
<thead>
<tr>
<th>No.</th>
<th>Conc. ((\mu \text{M}))</th>
<th>Histamine release inhibition (%)</th>
<th>Spontaneous histamine release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DNP24-BSA</td>
<td>Thapsigargin</td>
<td>Ionomycin</td>
</tr>
<tr>
<td>1.</td>
<td>0.1</td>
<td>0.75±5.94</td>
<td>5.49±5.34</td>
</tr>
<tr>
<td>2.</td>
<td>0.3</td>
<td>1.45±2.42</td>
<td>19.75±2.36</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>13.43±4.14</td>
<td>27.06±8.05</td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td>23.06±2.38</td>
<td>29.69±2.12</td>
</tr>
<tr>
<td>5.</td>
<td>10</td>
<td>25.03±5.28</td>
<td>36.08±8.41</td>
</tr>
<tr>
<td>6.</td>
<td>30</td>
<td>41.39±5.95</td>
<td>67.97±4.91</td>
</tr>
<tr>
<td>7.</td>
<td>100</td>
<td>60.17±1.90</td>
<td>74.45±3.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Conc. ((\mu \text{M}))</th>
<th>(\beta)-Hexosaminidase release inhibition (%)</th>
<th>Spontaneous (\beta)-hexosaminidase release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DNP24-BSA</td>
<td>Thapsigargin</td>
<td>Ionomycin</td>
</tr>
<tr>
<td>1.</td>
<td>0.1</td>
<td>1.51±8.99</td>
<td>-0.70±1.12</td>
</tr>
<tr>
<td>2.</td>
<td>0.3</td>
<td>3.46±3.80</td>
<td>6.06±4.79</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>8.31±8.75</td>
<td>20.30±7.56</td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td>21.04±6.83</td>
<td>22.90±1.62</td>
</tr>
<tr>
<td>5.</td>
<td>10</td>
<td>35.43±7.08</td>
<td>39.05±4.84</td>
</tr>
<tr>
<td>6.</td>
<td>30</td>
<td>58.49±7.83</td>
<td>74.63±3.38</td>
</tr>
<tr>
<td>7.</td>
<td>100</td>
<td>62.97±2.45</td>
<td>90.45±1.02</td>
</tr>
</tbody>
</table>

Concentration of DNP24-BSA, thapsigargin and ionomycin were 20 ng/mL, 0.5 \(\mu \text{M} \) and 1 \(\mu \text{M} \), respectively. Data represent mean ±SEM of three independent experiments.

Thapsigargin (0.5 \(\mu \text{M} \)), which acts on both the influx of calcium ions and intracellular calcium pathways (Brayden et al. 1989), stimulated the release of histamine and \(\beta \)-hexosaminidase by 54.57 ± 4.80%; and 40.87 ± 4.42%, respectively (Fig. 3). 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one significantly inhibited the thapsigargin-induced release of histamine and \(\beta \)-hexosaminidase in a dose-dependent manner. At a dose of 100 \(\mu \text{M} \), the compound potently inhibited the release of histamine and \(\beta \)-hexosaminidase from RBL-2H3 cells by 74.45 ± 3.90% and 90.45 ± 1.02%, respectively (Table 1). The respective IC\(_{50}\) values of the
Fig. 3: Effect of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one on histamine (a) and β-hexoaminidase (b) release from RBL-2H3 cells in the presence of thapsigargin 0.5 μM. Data represent mean±SEM, and are three independent experiments. * P<0.05 compared to the negative control value.
inhibitory effects of the compound on thapsigargin-mediated release of histamine and β-hexosaminidase were 18.73 μM and 16.16 μM. Ionomycin (1 μM), which acts as a calcium ion ionophore (Huang and Putney 1998), stimulated the release of histamine and β-hexosaminidase by 80.10±8.43% and 61.73 ± 3.13%, respectively (Fig. 4). 1,5-bis(4′-hydroxy-3′-methoxyphenyl)-1,4-pentadiene-3-one significantly inhibited the ionomycin-induced release of histamine and β-hexosaminidase in a dose-dependent manner. At a dose of 100 μM, the compound inhibited the release of histamine and β-hexosaminidase from RBL-2H3 cells by 72.61 ± 3.46% and 76.04 ± 5.31%, respectively (Table 1). The respective IC50 values of the inhibitory effects of the compound on thapsigargin-mediated histamine and β-hexosaminidase release were 19.89 μM and 27.25 μM.

![Graph](a)

Fig. 4: Effect of 1,5-bis(4′-hydroxy-3′-methoxyphenyl)-1,4-pentadiene-3-one on histamine (a) and β-hexosaminidase (b) release from RBL-2H3 cells in the presence of ionomycin 1 μM. Data represent mean±SEM, and are three independent experiments. *P<0.05 compared to the negative control value (continued on next page).
Another way to evaluate the anti-allergic property of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one is to study its effect on the ACA reaction. Ovalbumin (OVA) and Al(OH)₃ were injected subcutaneously into the dorsal skin of rats on the day 1 and 7. On day 14, a cutaneous anaphylactic reaction was generated by a subcutaneous injection of ovalbumin and visualised after an intravenous injection of Evans blue dye via the tail vein. 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one was orally administered to the rats 15 min prior to ovalbumin challenge, and the ACA reaction was evaluated as shown in Figure 5 and Table 2. Since pharmacokinetic data of the drug is not yet available, the 15 min oral treatment of the drug prior to OVA challenge was performed according to our group’s previous studies using other analogues of curcumin, such as Gamavuton-0 potassium (Nugroho et al. 2007) and Pentagamavunon-0 and its potassium salt (Ikawati et al. 2006). We assumed that analogues of curcumin have similar pharmacokinetic patterns. As seen in Table 2, this compound inhibited vascular permeability, which is an indication of cutaneous anaphylactic reaction.
Cromolyn sodium, a stabiliser of mast cell membranes, also clearly reduced the anaphylactic reaction.

Fig. 5: Effect of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one on ovalbumin-induced active cutaneous anaphylaxis in rat dorsal skin. Data represent mean ± SEM, and are five independent experiments. ■=control (vehicle), □= treatment of cromolyn sodium 2.16 mg/kg BW, ●= treatment of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one 10 mg/kg BW, ○= 20 mg/kg BW, ▲= 40 mg/kg BW.

Table 2: The inhibitory effect of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one on ovalbumin-induced active cutaneous anaphylaxis in rat dorsal skin.

<table>
<thead>
<tr>
<th>Treatment (mg/kg BW)</th>
<th>AUC_{0-8} (cm².hours)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>93.53 ± 2.50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32.55 ± 4.45 *</td>
<td>65.20 ± 4.76</td>
</tr>
<tr>
<td>20</td>
<td>68.22 ± 3.90 *</td>
<td>27.06 ± 4.17</td>
</tr>
<tr>
<td>40</td>
<td>61.35 ± 7.78 *</td>
<td>34.41 ± 8.32</td>
</tr>
<tr>
<td>Cromolyn sodium (2.16 mg/kg BW)</td>
<td>59.97 ± 5.94 *</td>
<td>35.89 ± 6.35</td>
</tr>
</tbody>
</table>

The drug was administered 15 min prior to challenge with ovalbumin. Each value represents the mean ±SEM of five independent experiments. *P<0.05, significantly different from the vehicle value.
Mast cells in the rat dorsal site stained by Alcian blue and NFR are shown in Figure 6. The control group, which was treated with ovalbumin, contained only a few mast cells. However, the number of stained mast cells increased after treatment with 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one 15 min prior to ovalbumin challenge (Fig. 5). In the present study, the histological observation provided qualitative data to support the active cutaneous anaphylactic reaction data (in vivo study). Representative photographs of skin sections in the study are shown, however, quantification of mast cell numbers is needed in further studies.

Fig. 6: The histopathology of alcian blue-NFR stained mast cells from dorsal skin of type I allergy models, (a) control (vehicle), (b) treatment of 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one 20 mg/kg BW, and (c) treatment of cromolyn sodium 2.16 mg/kg BW. Magnifications were 200x. Mast cells were stained blue indicated by arrow (continued on next page).
Fig. 6: (continued)
1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one is a 1,5-diphenyl-1,4-pentadiene-3-one analogue of curcumin (Sardjiman et al. 1997). The compound can be naturally isolated from the rhizomes of *Curcuma domestica* and *Curcuma longa* (Masuda et al. 1993; Park and Kim 2002). This compound can be easily synthesised in acidic conditions using vanillin and acetone as starting materials (Sardjiman et al. 1997). As a curcumin analogue, this compound is expected to have curcumin-like effects, such as anti-allergy and anti-inflammation properties. Curcumin was previously reported to show potent anti-allergy activities in both *in vitro* and *in vivo* studies (Yano et al. 2000a; Yano et al. 2000b). The hydroxy moieties of curcumin, which are responsible for its anti-oxidative effects, also play a significant role in its anti-allergy activity (Suzuki et al. 2005). In the present study, we determined the anti-allergy effects of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one on RBL-2H3 cells (a tumour analogue of mast cells) and in an *in vivo* active cutaneous anaphylaxis (ACA) reaction. Histamine release inducers used in the *in vitro* study were DNP24-BSA, thapsigargin or ionomycin, whereas ovalbumin was used for the *in vivo* study.

Dinitrophenylated bovine serum albumin (DNP24-BSA) is a specific antigen for monoclonal IgE antibodies (Bottcher et al. 1980; Liu et al. 1980). The cross-linkage of antigen to IgE antibody molecules on FceRI receptors can in turn, generate a series of intracellular signalling events such as the activation of protein tyrosine kinases and an increase of intracellular Ca$^{2+}$ levels. These subsequent signalling events trigger granule exocytosis, which releases histamine from mast cells (Metcalfe et al. 1997). In the present study, 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one was able to inhibit the DNP24-BSA-induced release of histamine and β-hexosaminidase from RBL-2H3 cells. These findings indicate that the curcumin analogue might alter the effect of DNP24-BSA on mast cells by affecting its interaction with IgE on the surface of mast cells or by altering the intracellular signal transduction that is involved in mast cell degranulation.

To investigate whether the inhibitory effect of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one is related to intracellular Ca$^{2+}$ signalling, we used thapsigargin and ionomycin. Thapsigargin, a sesquiterpene lactone isolated from plant *Thapsia garginica*, is able to induce the release of mediators from isolated rat mast cells (Patkar, Rasmussen and Diamant 1979; Brayden et al. 1989). Thapsigargin prevents Ca$^{2+}$ store refilling by targeting the sarco/endoplasmic reticulum Ca$^{2+}$
ATPase (SERCA). The RE-store becomes depleted because intracellular Ca2+ released from RE plays a major role in the opening of cell membrane Ca2+ channels, which causes Ca2+ influx into mast cells (Thastrup et al. 1990; Metcalfe et al. 1997). This phenomenon is called calcium release-activated calcium current (CRAC current or ICRAC)(Hoth and Penner 1992). SERCA functions to maintain ER stores of Ca2+ by pumping Ca2+ from the cytosol to the ER (Scharenberg, Humphries and Rawlings 2007). Ionomycin is a polyether antibiotic with a high affinity for calcium ions and can be obtained in pure form from fermentation broths of Streptomyces conglobatus sp. nov. Trejo by solvent extraction (Liu et al. 1978; Westley et al. 1979). It functions as a selective Ca2+ ionophore and increases intracellular Ca2+. Ionophores are hydrophobic molecules that dissolve in lipid bilayers and increase membrane permeability to specific inorganic ions (Albert et al. 1994). Ionomycin can induce the release of histamine from mast cells by increasing Ca2+ from both intracellular Ca2+ pools and Ca2+ influx (Huang and Putney 1998). In our study, 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one successfully inhibited both the thapsigargin and ionomycin-induced release of histamine and \(\beta\)-hexosaminidase from RBL-2H3. This finding indicates that the effect of this compound on the release of mast cells mediators may involve mechanisms related to intracellular Ca2+ signalling events or downstream processes of intracellular Ca2+ signalling in mast cells.

In general, the inhibitory effect of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one on RBL-2H3 cells was potent, but slightly less potent than that of curcumin, especially in the ionomycin experiments (Fig. 4). One study has reported that the anti-allergy effect of curcumin is closely related to its anti-oxidative effect, and hydroxy moieties of curcumin play a significant role in both effects of curcumin (Suzuki et al. 2005). In another study, the antioxidant activity of curcumin was shown to be mainly due to the hydroxy group, although a small fraction may be due to the methylene group (Priyadarsini et al. 2003). Additionally, the anti-oxidative effect of curcumin was shown to be a bit more potent than that of 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one (Sardjiman et al. 1997). It has been suggested that omission of the active methylene group and one carbonyl group leading to 1,4-pentadiene-3-one alters its biological activity.

Cutaneous anaphylactic reaction is a type I mast cell-mediated allergy model (Yano et al. 2000a). Mast cells play a role in the pathogenesis of some type I allergic reactions, such as hay fever,
initial phase of asthma, and urticaria. In some cases, the reaction is more severe and can produce anaphylactic shock (Rang et al. 2003). In the present study, we used ovalbumin to sensitize and generate the anaphylactic reaction. The effect of the drug at 20 mg/kg BW appeared higher than at 40 mg/kg BW, although both effects were statistically the same. This finding indicates that the maximum effect of the drug was reached at a dose of 20 mg/kg BW. At this dose, the drug can work with all possible targets in the body. Increasing the dose will not increase the effect and may perhaps decrease the effect of the drug. Histopathologically, the treatment of ovalbumin results in few mast cells or causes mast degranulation. Vascular permeability, an indication of cutaneous anaphylactic reaction, was observed by intravenous injection of Evans blue dye via the tail vein. In this study, 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one significantly inhibited the anaphylactic reaction and prevented mast cell degranulation. We can therefore, suggest that inhibition on mast cell degranulation underlies its inhibitory effect on the anaphylactic reaction.

CONCLUSION

The compound 1,5-bis(4'-hydroxy-3'-methoxyphenyl)-1,4-pentadiene-3-one showed anti-allergic activities in mast cell-mediated allergy models through mechanisms related to intracellular signalling events, such as intracellular Ca^2+ signalling or its subsequent downstream processes within mast cells. Nevertheless, further studies are required to investigate the detailed mechanisms of the anti-allergic effect of this compound.

ACKNOWLEDGEMENTS

We would like to thank the Director General of the Higher Education Ministry of National Education in the Republic of Indonesia through the “Hibah Bersaing XII Grant” for financially supporting some parts of the study, and we also thank the Department of Pharmacology, Ehime University School of Medicine for facilitating some parts of the study. We would also like to thank Mr. Leonardo Kurniawan and Mrs. Nofita for assistance in the ACA experiments.
REFERENCES

