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Introduction 

Wastewater sources involve two general 
types, chromium-related and non-chromium 
wastewaters (Patterson, et al., 1994). 
Although chromium is present in both the 
trivalent and hexavalent state in process 
solutions and wastes, the dominant species 
is hexavalent chromium (Pollution 
prevention and control technologies for 
plating operations, 2000). Hexavalent 
chromium exists primarily in two anion 
forms, HCrO4

2- and CrO4
2-, in wastewaters 

(Aoki, 1982).  The hexavalent chromium 
discharged into the rivers is very harmful for 
aquatic life and other living organisms 
(Upadhyay, 1992). It can produce serious 
hazardous effects like skin disorder, nose 
bleeding and perforation of nasal septum 
(Sankaranarayanan, et al., 1985). Medical 
statistics indicate that the risk of lung cancer 
is greater for workers in the chromium 
industry than for the general public (Roe, 
1977). USEPA has adopted a limit of 0.05 
mg/L in public water supplies (Eckenfelder, 
1970).  

Waste waters polluted with toxic 
hexavalent chromium result from sources 
such as textile mills, the pigment industry, 
metal finishing industries, drug and organic 
chemical industries and plant cooling 
systems where chromate is used as a 
corrosion inhibitor (Radwan, 1992). Among 
the various treatment techniques available, 
the most commonly used are reduction and 
precipitation, ion exchange and adsorption 
(Sharma, 1993). Others treatment techniques 
for hexavalent chromium are extraction 
(Chu, et al., 1996, Alonso, et al., 1997, 
Palanivelu, et al., 1998), biological 
treatment (Shen & Wang, 1994, Lee, et al., 
1995, Tobin & Roux, 1998, Aksu, et al., 
1999) and electrochemical treatment (Fleck 
& Bautista, 1991, Glikin, et al., 1995, 
Zhang, et al., 1998).  

 The present study reports work done on the 
reduction of hexavalent chromium indirectly 
with steel wood using a galvanic flow cell 
system represented as below: 
                   Fe⏐Fe2+‖Cr6+, Cr3+⏐C 

The electrode reactions for the galvanic cell 
used in these studies are as follows: (Bard & 
Faulkner, 1980) 
 
Reactions:          Eo, V 
 
Cathode : Cr2O7

2- + 14 H++ 6e-  2 Cr3+ + 7 H2O             
            +1.33  
Anode    : Fe2+ + 2e- Fe          -0.409  
Overall   : Cr2O7

2- + 3 Fe + 14 H+  2 Cr3+ +  
    3 Fe2+ + 7 H2O 

        +1.739 
 

The positive overall cell potential indicates 
that the overall reaction is a spontaneous 
reaction.   The galvanic flow cell was operated 
in a single pass mode as well as in recirculation 
mode.  Studies were also carried out to study the 
effect of direction of flow of the electrolytes 
with respect to each other.   

The apparent advantage of this technique is 
that it uses a cheap reducing agent. Besides, 
electrical energy is produced from the galvanic 
cell as a by-product. The advantage of the 
galvanic reduction of hexavalent chromium 
using a cell consisting of two compartments over 
the direct chemical reduction by iron scrap is 
that, in galvanic reduction, the resulting trivalent 
chromium is not mixed with iron ions and this 
makes it possible to recover trivalent chromium 
as pure Cr2(SO4)3 after a preconcentration step 
(Abdo, 1998).   
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Materials and Methods 

S  A   E   M   E    A   S 

S1                                              S1 

 
Setup of the cell system 

The schematic diagram of the galvanic 
flow cell is shown in Figure 1. The cell 
consists of two compartments separated by a 
cation exchange membrane R4010 , which is 
sandwiched between the cathode and anode 
compartment to separate the catholyte and 
anolyte. The cathode was a graphite sheet of 
the dimensions 2 x 4 x 0.3 cm. The anode 
was steel wool. The catholyte used was 
potassium dichromate solutions prepared in 
1 M sulphuric acid because the reduction 
efficiency is highly dependent on acid 
concentration (Ozer et al., 1997). The 
anolyte was 1 M NaCl solution. All 
solutions were prepared from analytical 
grade chemicals using deionised and 
distilled water. The current collectors were 
connected by an external conducting wire to 
complete the circuit.  

 
Counter flow cell and parallel flow cell 
 The schematic diagram of the counter 
flow cell is shown in Figure 1 and the 
schematic diagram of the parallel flow cell 
is shown in Figure 2. The electrolytes were 
pumped into the cell by a peristaltic pump.  
In the counter flow cell, the direction of 
flow for the catholyte was opposite to that of 
the anolyte.  In the parallel flow cell, the 
direction of flow is similar for both the 
catholyte and anolyte.  Output from this cell 
was collected and the quantity of hexavalent 
chromium left in the electrolyte was 
determined with a spectrophotometeric 
method using 1,5-diphenyl carbazide 
(Greenberg, et al., 1992). The experiment 
was carried out with different flow rates of 
electrolyte varying from 5 mL/min to 10 
mL/min and different initial concentrations 
of hexavalent chromium solutions varying 
from 10 ppm to 500 ppm. The cell was 
operated as a single-pass reactor where the 
electrolyte was passed only once through the 
cell.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample Anolyte 

Catholyte Drum 

 
FIGURE 1 Schematic diagram of counter flow 
cell.(S1:stainless steel support,  S: Teflon support, A: 
current collector, E: electrolyte compartment, 
M;membrane) 
 
 
Recirculation flow cell 
 The schematic diagram of the recirculation 
flow cell is shown in Figure 3. The experiment 
was carried out with different flow rates of 
electrolyte varying from 21 mL/min to 300 
mL/min and different initial concentrations of 
hexavalent chromium solutions varying from 10 
ppm to 500 ppm. The cell was operated as a 
multiple-pass reactor where the electrolyte was 
passed through the cell and flowed back to the 
tank until the concentration of hexavalent 
chromium in the tank falls below the detection 
limit. Aliquots from the tank were obtained and 
the quantity of hexavlent chromium left in the 
catholyte was analyzed with the method  
mentioned earlier.  
 
Real wastewater from electroplating company 
 Wastewater from an electroplating company 
was collected and the initial concentration of 
hexavalent chromium was determined. Sulfuric 
acid was added to increase the conductivity of 
the wastewater. Reduction of hexavalent 
chromium in wastewater carried out using the 
single-pass flow cell and recirculation flow cell. 
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The electrolyte flow rate for single-pass 
flow cell was 5.0 mL/min and the flow rate 
for recirculation flow cell was 300.0 
mL/min. 1 M sodium chloride was used as 
anolyte. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2  Schematic diagram of parallel flow 
cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3  Schematic diagram of recirculation 
flow cell 

Results and Discussion  
 
Effect of flow rates of electrolytes 

Graph 1 and 2 show that the reduction 
percentage of hexavalent chromium increased 
when the flow rates of electrolyte were 
decreased. This indicates that the greatest 
reduction percentage of hexavalent chromium 
was achieved with the lowest flow rate of 
electrolyte.  From the optimization process done 
by William (1999), it was shown that the highest 
reduction was achieved the lowest flow rate of 
catholyte. This is because the resident time for 
the catholyte to react in the cathode was 
increased at lower flow rates (Yiu, 2000).  

 
Effect of initial concentration of hexavalent 
chromium solution 
 The initial concentration of hexavalent 
chromium solution had a significant effect on 
the reduction percentage of hexavalent 
chromium on both cells used. The lower initial 
concentration of hexavalent chromium solution, 
the higher is the percentage reduction of 
hexavalent chromium as shown in graph 1 and 2. 
The studies done by Yiu (2000), William (1999) 
and Ozer (1997) had shown similar results using 
different systems. Because the aim is to reduce 
the hexavalent chromium completely, we need 
to use the lower flow rates of electrolyte for the 
higher initial concentration of hexavalent 
chromium solution for the single-pass flow cell. 
 
Comparison between counter flow cell and 
parallel flow cell 

Graphs 3 and 4 show that the percentage of 
reduction for hexavalent chromium using the 
counter flow cell was higher 2.1% than the 
parallel flow cell at flow rates of electrolyte at 
10 mL/min and the percentage of reduction for 
hexavalent chromium using the counter flow cell 
was 3.4% lower than the parallel flow cell at 
lower flow rates of electrolyte. The corrosion 
that occurs at the steel wool anode indicates that 
most of the reactions occur at the electrolyte 
inlet at lower flow rate. The percentage of 
reduction is higher using the parallel flow cell 

Sample 

Catholyte  Anolyte 

Drum 

Catholyte Anolyte
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GRAPH 3  Comparison between counter flow cell 
and parallel flow cell for electrolyte flow rate of 5 
mL/min. GRAPH 1  Effect of electrolyte flow rates and 

initial concentration of hexavalent chromium 
using a counter flow cell. 
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GRAPH 4 Comparison between counter flow cell and 
parallel flow cell for electrolyte flow rate of 10 
mL/min. 
 GRAPH 2 Effect of electrolyte flow rates and 

initial concentration of hexavalent chromium 
using a parallel flow cell. 

Comparison between single-pass flow cell and 
recirculation flow cell 

   The data  in Table 1 shows the time needed 
for the single-pass flow cell and recirculation 
flow cell to reduce 500mL of hexavalent 
chromium with similar concentration to below 
the detection limit. The flow rate of electrolyte 
for the recirculation cell was 300 mL/min and 
the flow rate of electrolyte for the single-pass 
flow cell to reduce hexavalent chromium to 
below detection limit is also shown in Table 1.  

because the reactions in the catholyte 
compartment and anolyte compartment 
occur at the same place. At higher flow rates 
of electrolyte, corrosion of steel wool occurs 
in the whole compartment. The percentage 
of reduction is higher using the counter flow 
cell because the pressure was higher when 
the electrolyte flows opposite to each other.    
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TABLE 1 Comparison between single-pass flow cell and recirculation flow cell. 
 

Initial concentration of 
Cr6+

Electrolyte flow rate of 
single-pass flow cell 

Recirculation flow cell 
(minutes) 

Single-pass flow cell 
(minutes) 

10 ppm 
 

5.00 mL/min 18 100 

50 ppm 
 

2.55 mL/min 26 196 

100 ppm 
 

1.31 mL/min 36 382 

500 ppm 
 

- 66 - 

 
The time needed for the single-pass flow 
cell was calculated using the equation 
below: 
 
  Time (min) = 500mL 
                 Flow rate of electrolyte (mL/min)  
 
It is also shown that the recirculation flow 
cell needed less time compared to the single-
pass flow cell. The recirculation flow cell 
will be more suitable for industrial use 
because it saves time that will be used for 
wastewater treatment. 
 
Wastewater from electroplating company 

Initial concentration of hexavalent 
chromium for wastewater that was collected 
from an electroplating company was 312.2 
ppm. Results showed a 73.6% reduction of 
hexavalent chromium using the single-pass 
flow cell. With the recirculation flow cell, 
28 minutes was required to reduce 500 mL 
of the wasterwater sample to hexavalent 
chromium levels below the detection limit. 
It shows that it is feasible to treat hexavalent 
chromium wastewater with this system in 
terms of cost and efficiency if this system. 
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